Improved genetic algorithm for minimum thickness composite laminate design

R. Le Riche, R.T. Haftka
{"title":"Improved genetic algorithm for minimum thickness composite laminate design","authors":"R. Le Riche,&nbsp;R.T. Haftka","doi":"10.1016/0961-9526(95)90710-S","DOIUrl":null,"url":null,"abstract":"<div><p>The use of a genetic algorithm for the minimum thickness design of composite laminated plates is explored. A previously developed genetic algorithm for laminate design is thoroughly revised and improved, by incorporating knowledge of the physics of the problem into the genetic algorithm. Constraints are accounted for by combining fixed and progressive penalty functions. Improved selection, mutation, and permutation operators are proposed. The use of an operator called scaling mutation that projects designs toward the feasible domain is investigated. The improvements in the genetic algorithm are shown to reduce the average price of a genetic search by more than 50%.</p></div>","PeriodicalId":100298,"journal":{"name":"Composites Engineering","volume":"5 2","pages":"Pages 143-161"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0961-9526(95)90710-S","citationCount":"210","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/096195269590710S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 210

Abstract

The use of a genetic algorithm for the minimum thickness design of composite laminated plates is explored. A previously developed genetic algorithm for laminate design is thoroughly revised and improved, by incorporating knowledge of the physics of the problem into the genetic algorithm. Constraints are accounted for by combining fixed and progressive penalty functions. Improved selection, mutation, and permutation operators are proposed. The use of an operator called scaling mutation that projects designs toward the feasible domain is investigated. The improvements in the genetic algorithm are shown to reduce the average price of a genetic search by more than 50%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小厚度复合材料层合板设计的改进遗传算法
探讨了遗传算法在复合材料层合板最小厚度设计中的应用。通过将问题的物理知识纳入遗传算法,对先前开发的层压板设计遗传算法进行了彻底的修订和改进。约束是通过结合固定和渐进惩罚函数来解释的。提出了改进的选择算子、变异算子和置换算子。研究了一种称为尺度突变的算子的使用,该算子将设计投影到可行域。遗传算法的改进使遗传搜索的平均成本降低了50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Announcement Editorial Board Announcement Announcement Foreword
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1