Generalized Odd Power Cauchy Family and Its Associated Heteroscedastic Regression Model

E. Ea, M. Alizadeh, T. Ramires, E. Ortega
{"title":"Generalized Odd Power Cauchy Family and Its Associated Heteroscedastic Regression Model","authors":"E. Ea, M. Alizadeh, T. Ramires, E. Ortega","doi":"10.19139/SOIC-2310-5070-765","DOIUrl":null,"url":null,"abstract":"This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter togain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimationmethod. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposedmodels. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposedfamily. Three data sets are analyzed with competitive and proposed models.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/SOIC-2310-5070-765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study introduces a generalization of the odd power Cauchy family by adding one more shape parameter togain more flexibility modeling the complex data structures. The linear representations for the density, moments, quantile,and generating functions are derived. The model parameters are estimated employing the maximum likelihood estimationmethod. The Monte Carlo simulations are performed under different parameter settings and sample sizes for the proposedmodels. In addition, we introduce a new heteroscedastic regression model based on the special member of the proposedfamily. Three data sets are analyzed with competitive and proposed models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义奇幂柯西族及其异方差回归模型
通过增加一个形状参数,对奇幂柯西族进行了推广,使复杂数据结构的建模更加灵活。导出了密度、矩、分位数和生成函数的线性表示。采用极大似然估计方法对模型参数进行估计。对所提出的模型在不同的参数设置和样本量下进行了蒙特卡罗模拟。此外,我们还引入了一种新的基于该家族特殊成员的异方差回归模型。用竞争性模型和建议模型分析了三个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1