Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach

Jadie Adams, N. Khan, A. Morris, Shireen Elhabian
{"title":"Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach","authors":"Jadie Adams, N. Khan, A. Morris, Shireen Elhabian","doi":"10.48550/arXiv.2209.02736","DOIUrl":null,"url":null,"abstract":"Clinical investigations of anatomy's structural changes over time could greatly benefit from population-level quantification of shape, or spatiotemporal statistic shape modeling (SSM). Such a tool enables characterizing patient organ cycles or disease progression in relation to a cohort of interest. Constructing shape models requires establishing a quantitative shape representation (e.g., corresponding landmarks). Particle-based shape modeling (PSM) is a data-driven SSM approach that captures population-level shape variations by optimizing landmark placement. However, it assumes cross-sectional study designs and hence has limited statistical power in representing shape changes over time. Existing methods for modeling spatiotemporal or longitudinal shape changes require predefined shape atlases and pre-built shape models that are typically constructed cross-sectionally. This paper proposes a data-driven approach inspired by the PSM method to learn population-level spatiotemporal shape changes directly from shape data. We introduce a novel SSM optimization scheme that produces landmarks that are in correspondence both across the population (inter-subject) and across time-series (intra-subject). We apply the proposed method to 4D cardiac data from atrial-fibrillation patients and demonstrate its efficacy in representing the dynamic change of the left atrium. Furthermore, we show that our method outperforms an image-based approach for spatiotemporal SSM with respect to a generative time-series model, the Linear Dynamical System (LDS). LDS fit using a spatiotemporal shape model optimized via our approach provides better generalization and specificity, indicating it accurately captures the underlying time-dependency.","PeriodicalId":74866,"journal":{"name":"Statistical atlases and computational models of the heart. STACOM (Workshop)","volume":"58 1","pages":"143-156"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical atlases and computational models of the heart. STACOM (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.02736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Clinical investigations of anatomy's structural changes over time could greatly benefit from population-level quantification of shape, or spatiotemporal statistic shape modeling (SSM). Such a tool enables characterizing patient organ cycles or disease progression in relation to a cohort of interest. Constructing shape models requires establishing a quantitative shape representation (e.g., corresponding landmarks). Particle-based shape modeling (PSM) is a data-driven SSM approach that captures population-level shape variations by optimizing landmark placement. However, it assumes cross-sectional study designs and hence has limited statistical power in representing shape changes over time. Existing methods for modeling spatiotemporal or longitudinal shape changes require predefined shape atlases and pre-built shape models that are typically constructed cross-sectionally. This paper proposes a data-driven approach inspired by the PSM method to learn population-level spatiotemporal shape changes directly from shape data. We introduce a novel SSM optimization scheme that produces landmarks that are in correspondence both across the population (inter-subject) and across time-series (intra-subject). We apply the proposed method to 4D cardiac data from atrial-fibrillation patients and demonstrate its efficacy in representing the dynamic change of the left atrium. Furthermore, we show that our method outperforms an image-based approach for spatiotemporal SSM with respect to a generative time-series model, the Linear Dynamical System (LDS). LDS fit using a spatiotemporal shape model optimized via our approach provides better generalization and specificity, indicating it accurately captures the underlying time-dependency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空心脏统计形状建模:数据驱动的方法
解剖结构随时间变化的临床研究可以从种群水平的形状量化或时空统计形状建模(SSM)中受益匪浅。这样的工具能够表征与感兴趣的队列相关的患者器官周期或疾病进展。构造形状模型需要建立一个定量的形状表示(例如,相应的地标)。基于粒子的形状建模(PSM)是一种数据驱动的SSM方法,通过优化地标放置来捕获种群水平的形状变化。然而,它假设横断面研究设计,因此在代表形状随时间变化的统计能力有限。现有的时空或纵向形状变化建模方法需要预定义的形状地图集和预先构建的形状模型,这些模型通常是横截面构建的。本文提出了一种受PSM方法启发的数据驱动方法,直接从形状数据中学习人口水平的时空形状变化。我们引入了一种新的SSM优化方案,该方案产生了跨种群(主体间)和跨时间序列(主体内)对应的地标。我们将所提出的方法应用于房颤患者的四维心脏数据,并证明其在表征左心房动态变化方面的有效性。此外,我们表明,我们的方法优于基于图像的时空SSM方法,相对于生成时间序列模型,线性动力系统(LDS)。通过我们的方法优化的时空形状模型的LDS拟合提供了更好的泛化和特异性,表明它准确地捕获了潜在的时间依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach. Statistical Shape Modeling of Biventricular Anatomy with Shared Boundaries. Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation. An Atlas-Based Analysis of Biventricular Mechanics in Tetralogy of Fallot. Statistical shape analysis of the tricuspid valve in hypoplastic left heart sydrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1