Optimizing the Configuration of Intelligent Reflecting Surfaces using Deep Learning

C. Sun, Navid Naderializadeh, M. Hashemi
{"title":"Optimizing the Configuration of Intelligent Reflecting Surfaces using Deep Learning","authors":"C. Sun, Navid Naderializadeh, M. Hashemi","doi":"10.1109/GCWkshps52748.2021.9682108","DOIUrl":null,"url":null,"abstract":"We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.","PeriodicalId":6802,"journal":{"name":"2021 IEEE Globecom Workshops (GC Wkshps)","volume":"38 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps52748.2021.9682108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a multi-user wireless network, where a single base station intends to communicate with multiple users by means of an intelligent reflecting surface (IRS), and we propose to optimize the IRS configuration using deep learning-based methodologies. In particular, we train a regression deep neural network to predict the communication channel parameters given the IRS configuration vectors. We further re-train this base model using the data of different users in order to maximize a weighted sum-rate objective function. Simulation results demonstrate that our proposed approach is able to optimize the IRS configuration for any unseen test users given their corresponding received signal patterns.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习优化智能反射面的配置
我们考虑了一个多用户无线网络,其中单个基站打算通过智能反射面(IRS)与多个用户通信,我们建议使用基于深度学习的方法优化IRS配置。特别是,我们训练了一个回归深度神经网络来预测给定IRS配置向量的通信信道参数。我们使用不同用户的数据进一步重新训练该基础模型,以最大化加权和率目标函数。仿真结果表明,我们提出的方法能够优化任何未见过的测试用户的IRS配置,给定他们相应的接收信号模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Blockchain-based Approach for Optimal Energy Dispatch and Fault Reporting in P2P Microgrid Joint Beamforming and BS Selection for Energy-Efficient Communications via Aerial-RIS Security and privacy issues of data-over-sound technologies used in IoT healthcare devices Joint Deployment Design and Power Control for UAV-enabled Covert Communications Leveraging Machine Learning and SDN-Fog Infrastructure to Mitigate Flood Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1