SEGAN-BASED LESION SEGMENTATION AND OPTIMIZED RideNN FOR DIABETIC RETINOPATHY CLASSIFICATION

Vidya Sagvekar, Manjusha S. Joshi
{"title":"SEGAN-BASED LESION SEGMENTATION AND OPTIMIZED RideNN FOR DIABETIC RETINOPATHY CLASSIFICATION","authors":"Vidya Sagvekar, Manjusha S. Joshi","doi":"10.4015/s1016237223500084","DOIUrl":null,"url":null,"abstract":"The most significant issue with diabetes is diabetic retinopathy (DR), which is the primary cause of blindness. DR typically develops no symptoms at the beginning of the disease, thus numerous physical examinations, including pupil dilation and a visual activity test, are necessary for DR identification. Due to the differences and challenges of DR, it is more challenging to identify it during the manual assessment. For DR patients, visual loss is prevented thanks to early detection and accurate therapy. Therefore, it is even more necessary to classify the severity levels of DR in order to provide a successful course of treatment. This study develops a deep learning method based on chronological rider sea lion optimization (CRSLO) for the classification of DR. The segmentation process divides the image into multiple subgroups, which is necessary for the appropriate detection and classification procedure. For the efficient identification of DR and classification of DR severity, the deep learning approach is used. Additionally, the CRSLO scheme is used to train the deep learning technique to achieve higher performance. With respect to testing accuracy, sensitivity, and specificity of 0.9218, 0.9304 and 0.9154, the newly introduced CRSLO-based deep learning approach outperformed other existing DR classification techniques like convolutional neural networks (CNNs), deep convolutional neural network (DCNN), synergic deep learning (SDL), HPTI-V4 and DR[Formula: see text]GRADUATE. The Speech Enhancement Generative Adversarial Network (SEGAN) model in use also produced increased segmentation accuracy of 0.90300.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"204 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The most significant issue with diabetes is diabetic retinopathy (DR), which is the primary cause of blindness. DR typically develops no symptoms at the beginning of the disease, thus numerous physical examinations, including pupil dilation and a visual activity test, are necessary for DR identification. Due to the differences and challenges of DR, it is more challenging to identify it during the manual assessment. For DR patients, visual loss is prevented thanks to early detection and accurate therapy. Therefore, it is even more necessary to classify the severity levels of DR in order to provide a successful course of treatment. This study develops a deep learning method based on chronological rider sea lion optimization (CRSLO) for the classification of DR. The segmentation process divides the image into multiple subgroups, which is necessary for the appropriate detection and classification procedure. For the efficient identification of DR and classification of DR severity, the deep learning approach is used. Additionally, the CRSLO scheme is used to train the deep learning technique to achieve higher performance. With respect to testing accuracy, sensitivity, and specificity of 0.9218, 0.9304 and 0.9154, the newly introduced CRSLO-based deep learning approach outperformed other existing DR classification techniques like convolutional neural networks (CNNs), deep convolutional neural network (DCNN), synergic deep learning (SDL), HPTI-V4 and DR[Formula: see text]GRADUATE. The Speech Enhancement Generative Adversarial Network (SEGAN) model in use also produced increased segmentation accuracy of 0.90300.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于segan的病变分割和优化的RideNN用于糖尿病视网膜病变分类
糖尿病最重要的问题是糖尿病视网膜病变(DR),这是失明的主要原因。DR通常在发病初期没有症状,因此需要进行大量体检,包括瞳孔扩张和视觉活动检查,以确定DR。由于DR的差异性和挑战性,在人工评估过程中识别DR更具挑战性。对于DR患者,由于早期发现和准确治疗,可以防止视力丧失。因此,更有必要对DR的严重程度进行分类,以便提供一个成功的治疗过程。本研究提出了一种基于时序骑海狮优化(CRSLO)的深度学习方法对dr进行分类,分割过程将图像划分为多个子组,这是适当的检测和分类程序所必需的。为了有效地识别DR并对DR的严重程度进行分类,采用了深度学习的方法。此外,还利用CRSLO方案对深度学习技术进行训练,以获得更高的性能。新引入的基于crlo的深度学习方法的检测准确率、灵敏度和特异性分别为0.9218、0.9304和0.9154,优于卷积神经网络(cnn)、深度卷积神经网络(DCNN)、协同深度学习(SDL)、HPTI-V4和DR等现有DR分类技术[公式:见文本]GRADUATE。使用的语音增强生成对抗网络(SEGAN)模型也提高了分割精度0.90300。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Engineering: Applications, Basis and Communications
Biomedical Engineering: Applications, Basis and Communications Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
1.50
自引率
11.10%
发文量
36
审稿时长
4 months
期刊介绍: Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies. Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.
期刊最新文献
CORRELATION OF POINCARE PLOT DERIVED STRESS SCORE AND HEART RATE VARIABILITY PARAMETERS IN THE ASSESSMENT OF CORONARY ARTERY DISEASE HEURISTIC-ASSISTED ADAPTIVE HYBRID DEEP LEARNING MODEL WITH FEATURE SELECTION FOR EPILEPSY DETECTION USING EEG SIGNALS MAGNETIC RESONANCE IMAGE DENOIZING USING A DUAL-CHANNEL DISCRIMINATIVE DENOIZING NETWORK PREDICTION OF EPILEPSY BASED ON EEMD AND LSSVM DOUBLE CLASSIFICATION FILTER SELECTION FOR REMOVING NOISE FROM CT SCAN IMAGES USING DIGITAL IMAGE PROCESSING ALGORITHM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1