M. Rinawa, P. Chauhan, Sintu Kumar, M. K. Singh, H. Singh, Amit Sharma, R. Sharma
{"title":"Field Localization and Density Cavitation in Low-Beta Plasmas","authors":"M. Rinawa, P. Chauhan, Sintu Kumar, M. K. Singh, H. Singh, Amit Sharma, R. Sharma","doi":"10.1155/2021/2891080","DOIUrl":null,"url":null,"abstract":"In the present paper, filamentous structure formation, associated turbulent spectrum, and density cavity formation phenomena have been investigated for low-\n \n β\n \n plasma \n \n \n \n β\n ≪\n \n \n \n \n m\n \n \n e\n \n \n \n /\n \n \n \n m\n \n \n i\n \n \n \n \n \n \n \n applicable to the auroral region. A set of dimensionless equations governing the dynamics of three dimensionally propagating inertial Alfvén wave (3D-IAW) and perpendicularly propagating magnetosonic wave (PMSW) has been developed. Ponderomotive force due to 3D-IAW has been included in the dynamics of the PMSW. Numerical simulation has been performed to study the nonlinear coupling of these two waves. From the obtained results, we found that the field intensity localization takes place which may further lead to the additional dissipation/turbulence process for particle heating and acceleration in space plasma. The associated turbulent spectrum is obtained with scaling nearly \n \n \n \n k\n \n \n −\n 4.28\n \n \n \n at smaller scales (in the dissipation range). Relevance of the obtained results with the observations reported by various spacecrafts such as Hawkeye and Heos 2 has been discussed. Also, density fluctuations (depletion) of \n \n ∼\n 0.10\n \n \n \n n\n \n \n 0\n \n \n \n are calculated, which are consistent with the FAST spacecraft observation reported.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"104 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/2891080","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the present paper, filamentous structure formation, associated turbulent spectrum, and density cavity formation phenomena have been investigated for low-
β
plasma
β
≪
m
e
/
m
i
applicable to the auroral region. A set of dimensionless equations governing the dynamics of three dimensionally propagating inertial Alfvén wave (3D-IAW) and perpendicularly propagating magnetosonic wave (PMSW) has been developed. Ponderomotive force due to 3D-IAW has been included in the dynamics of the PMSW. Numerical simulation has been performed to study the nonlinear coupling of these two waves. From the obtained results, we found that the field intensity localization takes place which may further lead to the additional dissipation/turbulence process for particle heating and acceleration in space plasma. The associated turbulent spectrum is obtained with scaling nearly
k
−
4.28
at smaller scales (in the dissipation range). Relevance of the obtained results with the observations reported by various spacecrafts such as Hawkeye and Heos 2 has been discussed. Also, density fluctuations (depletion) of
∼
0.10
n
0
are calculated, which are consistent with the FAST spacecraft observation reported.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.