Nuclear hydrogen using high temperature electrolysis and light water reactors for peak electricity production

C. Forsberg, M. Kazimi
{"title":"Nuclear hydrogen using high temperature electrolysis and light water reactors for peak electricity production","authors":"C. Forsberg, M. Kazimi","doi":"10.1787/9789264087156-17-EN","DOIUrl":null,"url":null,"abstract":"In a carbon-dioxide-constrained world, the primary methods to produce electricity (nuclear, solar, wind and fossil fuels with carbon sequestration) have low operating costs and high capital costs. To minimise the cost of electricity, these plants must operate at maximum capacity; however, the electrical outputs do not match changing electricity demands with time. A system to produce intermediate and peak electricity is described that uses light water reactors (LWR) and high temperature electrolysis. At times of low electricity demand the LWR provides steam and electricity to a high temperature steam electrolysis system to produce hydrogen and oxygen that are stored. At times of high electricity demand, the reactor produces electricity for the electrical grid. Additional peak electricity is produced by combining the hydrogen and oxygen by operating the high temperature electrolysis units in reverse as fuel cells or using an oxy-hydrogen steam cycle. The storage and use of hydrogen and oxygen for intermediate and peak power production reduces the capital cost, increases the efficiency of the peak power production systems, and enables nuclear energy to be used to meet daily, weekly and seasonal changes in electrical demand. The economic viability is based on the higher electricity prices paid for peak-load electricity.","PeriodicalId":88069,"journal":{"name":"Nuclear science abstracts","volume":"23 1","pages":"155-164"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear science abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1787/9789264087156-17-EN","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In a carbon-dioxide-constrained world, the primary methods to produce electricity (nuclear, solar, wind and fossil fuels with carbon sequestration) have low operating costs and high capital costs. To minimise the cost of electricity, these plants must operate at maximum capacity; however, the electrical outputs do not match changing electricity demands with time. A system to produce intermediate and peak electricity is described that uses light water reactors (LWR) and high temperature electrolysis. At times of low electricity demand the LWR provides steam and electricity to a high temperature steam electrolysis system to produce hydrogen and oxygen that are stored. At times of high electricity demand, the reactor produces electricity for the electrical grid. Additional peak electricity is produced by combining the hydrogen and oxygen by operating the high temperature electrolysis units in reverse as fuel cells or using an oxy-hydrogen steam cycle. The storage and use of hydrogen and oxygen for intermediate and peak power production reduces the capital cost, increases the efficiency of the peak power production systems, and enables nuclear energy to be used to meet daily, weekly and seasonal changes in electrical demand. The economic viability is based on the higher electricity prices paid for peak-load electricity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核氢利用高温电解和轻水反应堆进行高峰发电
在一个二氧化碳限制的世界里,主要的发电方法(核能、太阳能、风能和具有碳封存的化石燃料)运营成本低,资本成本高。为了最大限度地降低电力成本,这些发电厂必须以最大容量运行;然而,电力输出不能满足随时间变化的电力需求。介绍了一种利用轻水堆和高温电解技术生产中峰电的系统。在电力需求低的时候,LWR向高温蒸汽电解系统提供蒸汽和电力,以产生储存的氢和氧。在电力需求高的时候,反应堆为电网发电。通过反向操作高温电解装置作为燃料电池或使用氧-氢蒸汽循环,将氢和氧结合在一起产生额外的峰值电力。氢气和氧气的储存和使用可以降低资本成本,提高峰值电力生产系统的效率,并使核能能够用于满足每日、每周和季节性的电力需求变化。经济可行性是基于为高峰负荷电力支付更高的电价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of the Basic Neutronics and Thermal-Hydraulics for the Safety Evaluation of the Advanced Micro Reactor (AMR) Reunderstand and Discuss the Hardness Limits of RCC-M M5110 Part Materials Energies of Doubly Excited 1,3P° Resonances in He-like Systems Below the N = 2–14 Hydrogenic Threshold Structural Assessment of the European DEMO Water-Cooled Lithium Lead Breeding Blanket Central Outboard Segment Under Remote Maintenance Loading Conditions Investigation of Alignment Effects of Neutron and Proton Pairs in High Spin States of Band Crossing for 159,160Sm Isotopes Using Projected Shell Model (PSM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1