A new test for common breaks in heterogeneous panel data models

IF 2.5 Q2 ECONOMICS Econometrics and Statistics Pub Date : 2023-02-01 DOI:10.1016/j.ecosta.2023.01.005
Peiyun Jiang , Eiji Kurozumi
{"title":"A new test for common breaks in heterogeneous panel data models","authors":"Peiyun Jiang ,&nbsp;Eiji Kurozumi","doi":"10.1016/j.ecosta.2023.01.005","DOIUrl":null,"url":null,"abstract":"<div><div>A new test is proposed to detect whether break points are common in heterogeneous panel data models where the time series dimension T could be large relative to cross-section dimension N. The error process is assumed to be cross-sectionally independent. The test is based on the cumulative sum (CUSUM) of ordinary least squares (OLS) residuals. The asymptotic distribution<span> of the detecting statistic is derived under the null hypothesis, while the test is shown to be consistent under the alternative. Monte Carlo simulations and an empirical example show good performance of the test.</span></div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"37 ","pages":"Pages 87-125"},"PeriodicalIF":2.5000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306223000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A new test is proposed to detect whether break points are common in heterogeneous panel data models where the time series dimension T could be large relative to cross-section dimension N. The error process is assumed to be cross-sectionally independent. The test is based on the cumulative sum (CUSUM) of ordinary least squares (OLS) residuals. The asymptotic distribution of the detecting statistic is derived under the null hypothesis, while the test is shown to be consistent under the alternative. Monte Carlo simulations and an empirical example show good performance of the test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异构面板数据模型中常见中断的新测试
提出了一种新的检验方法,用于检测时间序列维数T相对于截面维数n可能较大的异构面板数据模型中断点是否普遍存在,并假设误差过程与截面无关。该检验基于普通最小二乘(OLS)残差的累积和(CUSUM)。在零假设下导出了检测统计量的渐近分布,而在备择假设下证明了检验是一致的。蒙特卡罗仿真和实例验证了该方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
期刊最新文献
Editorial Board Editorial Board The benefits of returns and options in the estimation of GARCH models. A Heston-Nandi GARCH insight Approximation of BSDE with hidden forward equation and unknown volatility GMM Model Averaging Using Higher Order Approximations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1