Analysis of Covid-19 daily results and information about patients using SQL and PowerBi

IF 3.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Data Science and Analytics Pub Date : 2023-05-20 DOI:10.18517/ijods.4.1.1-9.2023
Sulejman Karamehic
{"title":"Analysis of Covid-19 daily results and information about patients using SQL and PowerBi","authors":"Sulejman Karamehic","doi":"10.18517/ijods.4.1.1-9.2023","DOIUrl":null,"url":null,"abstract":"COVID-19 is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic. The outburst of COVID-19 pandemic had tremendous effect on the whole world and analysis of the data can be meaningful in many ways to better understand the effect it had in our society. This paper aims in the direction of analysis of COVID-19 daily information based on country and continent level in terms of understanding the number of cases and deaths and their relationship, besides this is aims to better understand the vaccination number by country and effect of cases/death how they have affected these numbers. The solution was created on analysis of a dataset that contains daily information on each country, and using MySQL, SQL and PowerBi to generate the results for this work in way of query results which have been transformed to visuals using PowerBi for better understanding for further research work on this topic.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"227 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18517/ijods.4.1.1-9.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

COVID-19 is a contagious disease caused by a virus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The first known case was identified in Wuhan, China, in December 2019. The disease quickly spread worldwide, resulting in the COVID-19 pandemic. The outburst of COVID-19 pandemic had tremendous effect on the whole world and analysis of the data can be meaningful in many ways to better understand the effect it had in our society. This paper aims in the direction of analysis of COVID-19 daily information based on country and continent level in terms of understanding the number of cases and deaths and their relationship, besides this is aims to better understand the vaccination number by country and effect of cases/death how they have affected these numbers. The solution was created on analysis of a dataset that contains daily information on each country, and using MySQL, SQL and PowerBi to generate the results for this work in way of query results which have been transformed to visuals using PowerBi for better understanding for further research work on this topic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SQL和PowerBi分析Covid-19的日常结果和患者信息
COVID-19是一种由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)病毒引起的传染病。首例已知病例于2019年12月在中国武汉被发现。该疾病迅速在全球传播,导致COVID-19大流行。COVID-19大流行的爆发对整个世界产生了巨大影响,对数据的分析在很多方面都有意义,可以更好地了解它对我们社会的影响。本文旨在分析基于国家和大陆层面的COVID-19每日信息,了解病例数和死亡人数及其关系,此外,这是为了更好地了解按国家分列的疫苗接种数量和病例/死亡的影响,它们是如何影响这些数字的。该解决方案是在对包含每个国家日常信息的数据集进行分析的基础上创建的,并使用MySQL, SQL和PowerBi以查询结果的方式生成这项工作的结果,这些结果已使用PowerBi转换为视觉效果,以便更好地理解该主题的进一步研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
8.30%
发文量
72
期刊介绍: Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci­ence, and lifestyle. The field encompasses the larger ar­eas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci­entific chal­lenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis­ualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The jour­nal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applica­tions of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interopera­bility, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics
期刊最新文献
Power Analysis for Causal Discovery. Discrete double factors of a family of odd Weibull-G distributions: features and modeling Artificial intelligence trend analysis in German business and politics: a web mining approach Speech-based detection of multi-class Alzheimer’s disease classification using machine learning Implementation of air pollution traceability method based on IF-GNN-FC model with multiple-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1