Extending RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage Format

J. Beckmann, A. Halverson, R. Krishnamurthy, J. Naughton
{"title":"Extending RDBMSs To Support Sparse Datasets Using An Interpreted Attribute Storage Format","authors":"J. Beckmann, A. Halverson, R. Krishnamurthy, J. Naughton","doi":"10.1109/ICDE.2006.67","DOIUrl":null,"url":null,"abstract":"\"Sparse\" data, in which relations have many attributes that are null for most tuples, presents a challenge for relational database management systems. If one uses the normal \"horizontal\" schema to store such data sets in any of the three leading commercial RDBMS, the result is tables that occupy vast amounts of storage, most of which is devoted to nulls. If one attempts to avoid this storage blowup by using a \"vertical\" schema, the storage utilization is indeed better, but query performance is orders of magnitude slower for certain classes of queries. In this paper, we argue that the proper way to handle sparse data is not to use a vertical schema, but rather to extend the RDBMS tuple storage format to allow the representation of sparse attributes as interpreted fields. The addition of interpreted storage allows for efficient and transparent querying of sparse data, uniform access to all attributes, and schema scalability. We show, through an implementation in PostgreSQL, that the interpreted storage approach dominates in query efficiency and ease-of-use over the current horizontal storage and vertical schema approaches over a wide range of queries and sparse data sets.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"102 1","pages":"58-58"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 101

Abstract

"Sparse" data, in which relations have many attributes that are null for most tuples, presents a challenge for relational database management systems. If one uses the normal "horizontal" schema to store such data sets in any of the three leading commercial RDBMS, the result is tables that occupy vast amounts of storage, most of which is devoted to nulls. If one attempts to avoid this storage blowup by using a "vertical" schema, the storage utilization is indeed better, but query performance is orders of magnitude slower for certain classes of queries. In this paper, we argue that the proper way to handle sparse data is not to use a vertical schema, but rather to extend the RDBMS tuple storage format to allow the representation of sparse attributes as interpreted fields. The addition of interpreted storage allows for efficient and transparent querying of sparse data, uniform access to all attributes, and schema scalability. We show, through an implementation in PostgreSQL, that the interpreted storage approach dominates in query efficiency and ease-of-use over the current horizontal storage and vertical schema approaches over a wide range of queries and sparse data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用解释属性存储格式扩展rdbms以支持稀疏数据集
在“稀疏”数据中,关系的许多属性对于大多数元组都是空的,这对关系数据库管理系统提出了挑战。如果使用正常的“水平”模式在三种领先的商用RDBMS中的任何一种中存储此类数据集,结果是表占用大量存储空间,其中大部分用于空值。如果试图通过使用“垂直”模式来避免这种存储爆炸,那么存储利用率确实会更好,但是对于某些查询类,查询性能会降低几个数量级。在本文中,我们认为处理稀疏数据的正确方法不是使用垂直模式,而是扩展RDBMS元组存储格式,以允许将稀疏属性表示为解释字段。解释存储的添加允许对稀疏数据进行高效和透明的查询、对所有属性的统一访问以及模式可伸缩性。通过在PostgreSQL中的一个实现,我们展示了在查询效率和易用性方面,解释存储方法比当前的水平存储和垂直模式方法在广泛的查询和稀疏数据集上占据主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1