The splashback boundary of haloes in hydrodynamic simulations

Stephanie O’Neil, D. Barnes, M. Vogelsberger, B. Diemer
{"title":"The splashback boundary of haloes in hydrodynamic simulations","authors":"Stephanie O’Neil, D. Barnes, M. Vogelsberger, B. Diemer","doi":"10.1093/mnras/stab1221","DOIUrl":null,"url":null,"abstract":"The splashback radius, $R_{\\rm sp}$, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study $R_{\\rm sp}$ in the hydrodynamic and dark matter only IllustrisTNG simulations. The most commonly adopted signature of $R_{\\rm sp}$ is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimise our density profile fit to the profile slope and find that this leads to a $\\sim5\\%$ larger radius compared to other optimisations. We calculate $R_{\\rm sp}$ for haloes with masses between $10^{13-15}{\\rm M}_{\\odot}$ as a function of halo mass, accretion rate and redshift. $R_{\\rm sp}$ decreases with mass and with redshift for haloes of similar $M_{\\rm200m}$ in agreement with previous work. We also find that $R_{\\rm sp}/R_{\\rm200m}$ decreases with halo accretion rate. We apply our analysis to dark matter, gas and satellite galaxies associated with haloes to investigate the observational potential of $R_{\\rm sp}$. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare $R_{\\rm sp}$ in hydrodynamic and N-body dark matter only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter only simulations should be applicable to realistic haloes.","PeriodicalId":8452,"journal":{"name":"arXiv: Astrophysics of Galaxies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Astrophysics of Galaxies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/stab1221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The splashback radius, $R_{\rm sp}$, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study $R_{\rm sp}$ in the hydrodynamic and dark matter only IllustrisTNG simulations. The most commonly adopted signature of $R_{\rm sp}$ is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimise our density profile fit to the profile slope and find that this leads to a $\sim5\%$ larger radius compared to other optimisations. We calculate $R_{\rm sp}$ for haloes with masses between $10^{13-15}{\rm M}_{\odot}$ as a function of halo mass, accretion rate and redshift. $R_{\rm sp}$ decreases with mass and with redshift for haloes of similar $M_{\rm200m}$ in agreement with previous work. We also find that $R_{\rm sp}/R_{\rm200m}$ decreases with halo accretion rate. We apply our analysis to dark matter, gas and satellite galaxies associated with haloes to investigate the observational potential of $R_{\rm sp}$. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare $R_{\rm sp}$ in hydrodynamic and N-body dark matter only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter only simulations should be applicable to realistic haloes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水动力模拟中光晕的反溅边界
溅射半径$R_{\rm sp}$是一个物理驱动的光晕边界,它将落入和坍缩的光晕物质分开。我们在流体力学和暗物质中只进行了插图模拟研究$R_{\rm sp}$。$R_{\rm sp}$最常用的特征是径向密度曲线最陡处的半径。因此,我们明确优化我们的密度剖面适合剖面斜率,并发现与其他优化相比,这导致$\sim5\%$更大的半径。我们计算了质量在$10^{13-15}{\rm M}_{\odot}$之间的晕的$R_{\rm sp}$,作为晕质量,吸积率和红移的函数。对于类似$M_{\rm200m}$的光晕,$R_{\rm sp}$随质量和红移而减小,这与以前的工作一致。我们还发现$R_{\rm sp}/R_{\rm200m}$随着光晕吸积速率的增大而减小。我们将我们的分析应用于与光晕相关的暗物质、气体和卫星星系,以研究$R_{\rm sp}$的观测潜力。气体剖面的最陡斜率半径始终小于暗物质剖面的计算值。观测中经常使用的星系剖面中最陡的斜率,往往与暗物质剖面一致,但对于质量较小的晕,斜率较低。我们比较了$R_{\rm sp}$在流体力学和n体暗物质模拟中,没有发现添加重子物理导致的显著差异。因此,暗物质模拟的结果应该适用于现实的光晕。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Whistler-regulated MHD: Transport equations for electron thermal conduction in the high $β$ intracluster medium of galaxy clusters Galaxy properties of type 1 and 2 X-ray selected AGN and a comparison among different classification criteria Chemical modeling of the complex organic molecules in the extended region around Sagittarius B2 Explaining the scatter in the galaxy mass–metallicity relation with gas flows METAL: The Metal Evolution, Transport, and Abundance in the Large Magellanic Cloud Hubble program. II. Variations of interstellar depletions and dust-to-gas ratio within the LMC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1