Large-scale high-precision topic modeling on twitter

Shuang-Hong Yang, A. Kolcz, A. Schlaikjer, Pankaj Gupta
{"title":"Large-scale high-precision topic modeling on twitter","authors":"Shuang-Hong Yang, A. Kolcz, A. Schlaikjer, Pankaj Gupta","doi":"10.1145/2623330.2623336","DOIUrl":null,"url":null,"abstract":"We are interested in organizing a continuous stream of sparse and noisy texts, known as \"tweets\", in real time into an ontology of hundreds of topics with measurable and stringently high precision. This inference is performed over a full-scale stream of Twitter data, whose statistical distribution evolves rapidly over time. The implementation in an industrial setting with the potential of affecting and being visible to real users made it necessary to overcome a host of practical challenges. We present a spectrum of topic modeling techniques that contribute to a deployed system. These include non-topical tweet detection, automatic labeled data acquisition, evaluation with human computation, diagnostic and corrective learning and, most importantly, high-precision topic inference. The latter represents a novel two-stage training algorithm for tweet text classification and a close-loop inference mechanism for combining texts with additional sources of information. The resulting system achieves 93% precision at substantial overall coverage.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

Abstract

We are interested in organizing a continuous stream of sparse and noisy texts, known as "tweets", in real time into an ontology of hundreds of topics with measurable and stringently high precision. This inference is performed over a full-scale stream of Twitter data, whose statistical distribution evolves rapidly over time. The implementation in an industrial setting with the potential of affecting and being visible to real users made it necessary to overcome a host of practical challenges. We present a spectrum of topic modeling techniques that contribute to a deployed system. These include non-topical tweet detection, automatic labeled data acquisition, evaluation with human computation, diagnostic and corrective learning and, most importantly, high-precision topic inference. The latter represents a novel two-stage training algorithm for tweet text classification and a close-loop inference mechanism for combining texts with additional sources of information. The resulting system achieves 93% precision at substantial overall coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推特上的大规模高精度主题建模
我们感兴趣的是将连续的稀疏和嘈杂的文本流(称为“tweets”)实时组织成一个包含数百个主题的本体,具有可测量和严格的高精度。这种推断是在全面的Twitter数据流上执行的,这些数据的统计分布随着时间的推移而迅速发展。在工业环境中实施,有可能影响到实际用户并使其可见,因此必须克服许多实际挑战。我们提出了一系列有助于部署系统的主题建模技术。这些包括非主题推文检测,自动标记数据采集,人工计算评估,诊断和纠正学习,最重要的是,高精度主题推理。后者代表了一种新的用于tweet文本分类的两阶段训练算法和用于将文本与附加信息源结合的闭环推理机制。最终系统在总体覆盖范围内达到93%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1