Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating
{"title":"Proposing a new conceptual model for the reconstruction of ice dynamics in the SW sector of the Scandinavian Ice Sheet (SIS) based on the reinterpretation of published data and new evidence from optically stimulated luminescence (OSL) dating","authors":"C. Lüthgens, Jacob Hardt, M. Böse","doi":"10.5194/egqsj-69-201-2020","DOIUrl":null,"url":null,"abstract":"Abstract. We propose a new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression. The review of existing geochronological data from Germany, Denmark and southernmost Sweden in combination with new optically stimulated luminescence (OSL) data from the German Oder Lobe area is the basis for a reassessment and an improvement of previous ice dynamic models. Factors like the pre-existing topography, glaciotectonic features and the occurrence of till beds and inter-till deposits of varying origin are also taken into consideration for our process-based reconstruction of the sedimentary environments close to the ice margin and hence the ice dynamics of the Scandinavian Ice Sheet (SIS). During the early MIS 3 (marine isotope stage), the late MIS 3 and MIS 2, the SIS advanced into present-day terrestrial areas around the south-western Baltic Sea Basin. The first ice advance during the warming phase in early MIS 3 is poorly documented as the Ellund–Warnow Advance in Germany but may be correlated with the numerically dated Ristinge Advance in Denmark and Sweden. The late MIS 3 advance in contrast is reliably documented. It shaped the landforms of the Brandenburg Advance and the maximum Weichselian ice extent in the Oder Lobe area in north-eastern Germany and occurred contemporaneously with the Klintholm Advance in southern Sweden and Denmark. The lack of a corresponding till in various cliff profiles along the Baltic Sea coastline between southern Schleswig-Holstein and the island of Rügen can be explained by the distinct lobate structure of this ice advance, which was strongly guided by the pre-existing low-lying topography. We propose the horst of Bornholm, Denmark, acting as an ice divide, with ice-dammed lakes existing on the lee side between two glacier lobes. This lobate structure had not been considered in previous conceptual models, which led to seemingly conflicting chronological and stratigraphical interpretations. Our introduction of the lobate structure for the first time resolves these contradictions and integrates the data in a coherent model. The dynamics of the MIS 2 readvance to the Last Glacial Maximum (LGM) extent were clearly different to the previous advance and were most likely characterized by a more uniformly advancing ice front with a less lobate structure which also overrode the horst of Bornholm and the island of Rügen. This advance reached the maximum Weichselian ice extent in some parts of the south-western SIS, but, in the Oder Lobe area, it is proven to have terminated at a lesser extent than the early MIS 3 advance, but it did shape the most prominent morphological landform record of the last glacial cycle. In order to advance the reconstruction of Weichselian ice dynamics in the future, we strongly suggest using both an MIS-based terminology and a process-based approach in the interpretation of geochronological data to live up to the dynamic nature of continental ice sheets.","PeriodicalId":11420,"journal":{"name":"E&G Quaternary Science Journal","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E&G Quaternary Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/egqsj-69-201-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Abstract. We propose a new concept of the Weichselian ice dynamics in the south-western sector of the Baltic Sea depression. The review of existing geochronological data from Germany, Denmark and southernmost Sweden in combination with new optically stimulated luminescence (OSL) data from the German Oder Lobe area is the basis for a reassessment and an improvement of previous ice dynamic models. Factors like the pre-existing topography, glaciotectonic features and the occurrence of till beds and inter-till deposits of varying origin are also taken into consideration for our process-based reconstruction of the sedimentary environments close to the ice margin and hence the ice dynamics of the Scandinavian Ice Sheet (SIS). During the early MIS 3 (marine isotope stage), the late MIS 3 and MIS 2, the SIS advanced into present-day terrestrial areas around the south-western Baltic Sea Basin. The first ice advance during the warming phase in early MIS 3 is poorly documented as the Ellund–Warnow Advance in Germany but may be correlated with the numerically dated Ristinge Advance in Denmark and Sweden. The late MIS 3 advance in contrast is reliably documented. It shaped the landforms of the Brandenburg Advance and the maximum Weichselian ice extent in the Oder Lobe area in north-eastern Germany and occurred contemporaneously with the Klintholm Advance in southern Sweden and Denmark. The lack of a corresponding till in various cliff profiles along the Baltic Sea coastline between southern Schleswig-Holstein and the island of Rügen can be explained by the distinct lobate structure of this ice advance, which was strongly guided by the pre-existing low-lying topography. We propose the horst of Bornholm, Denmark, acting as an ice divide, with ice-dammed lakes existing on the lee side between two glacier lobes. This lobate structure had not been considered in previous conceptual models, which led to seemingly conflicting chronological and stratigraphical interpretations. Our introduction of the lobate structure for the first time resolves these contradictions and integrates the data in a coherent model. The dynamics of the MIS 2 readvance to the Last Glacial Maximum (LGM) extent were clearly different to the previous advance and were most likely characterized by a more uniformly advancing ice front with a less lobate structure which also overrode the horst of Bornholm and the island of Rügen. This advance reached the maximum Weichselian ice extent in some parts of the south-western SIS, but, in the Oder Lobe area, it is proven to have terminated at a lesser extent than the early MIS 3 advance, but it did shape the most prominent morphological landform record of the last glacial cycle. In order to advance the reconstruction of Weichselian ice dynamics in the future, we strongly suggest using both an MIS-based terminology and a process-based approach in the interpretation of geochronological data to live up to the dynamic nature of continental ice sheets.