{"title":"sPS/PPS/Carbon Nanotube Ternary Composites with Improved Conductivity by Controlled Melt Blending Process","authors":"Shuling Deng, Linmin Cao, Debin Kong, Zhidan Lin","doi":"10.1080/03602559.2017.1354225","DOIUrl":null,"url":null,"abstract":"ABSTRACT Syndiotactic polystyrene/poly(phenylene sulfide)/carbon nanotube ternary nanocomposites were prepared using a controlled melt blending process. The composites exhibited sea–island structures of syndiotactic polystyrene as continuous phase and poly(phenylene sulfide) as dispersed phase, and carbon nanotubes were concentrated on the interface or in the syndiotactic polystyrene phase. As a result, the theoretical percolation threshold of the composite was reduced to 0.399 wt%. Moreover, the electrical conductivity of the composite remained stable even after being processed for several times. Results revealed a particular effect of carbon nanotubes that their presence can enhance the dispersion of phases and provide conductivity to the blend at low contents in this system. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"772 1","pages":"850 - 859"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1354225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Syndiotactic polystyrene/poly(phenylene sulfide)/carbon nanotube ternary nanocomposites were prepared using a controlled melt blending process. The composites exhibited sea–island structures of syndiotactic polystyrene as continuous phase and poly(phenylene sulfide) as dispersed phase, and carbon nanotubes were concentrated on the interface or in the syndiotactic polystyrene phase. As a result, the theoretical percolation threshold of the composite was reduced to 0.399 wt%. Moreover, the electrical conductivity of the composite remained stable even after being processed for several times. Results revealed a particular effect of carbon nanotubes that their presence can enhance the dispersion of phases and provide conductivity to the blend at low contents in this system. GRAPHICAL ABSTRACT