S. Thirumala, Arnab Raha, H. Jayakumar, Kaisheng Ma, N. Vijaykrishnan, V. Raghunathan, S. Gupta
{"title":"Dual Mode Ferroelectric Transistor based Non-Volatile Flip-Flops for Intermittently-Powered Systems","authors":"S. Thirumala, Arnab Raha, H. Jayakumar, Kaisheng Ma, N. Vijaykrishnan, V. Raghunathan, S. Gupta","doi":"10.1145/3218603.3218653","DOIUrl":null,"url":null,"abstract":"In this work, we propose dual mode ferroelectric transistors (D-FEFETs) that exhibit dynamic tuning of operation between volatile and non-volatile modes with the help of a control signal. We utilize the unique features of D-FEFET to design two variants of non-volatile flip-flops (NVFFs). In both designs, D-FEFETs are operated in the volatile mode for normal operations and in the non-volatile mode to backup the state of the flip-flop during a power outage. The first design comprises of a truly embedded non-volatile element (D-FEFET) which enables a fully automatic backup operation. In the second design, we introduce need-based backup, which lowers energy during normal operation at the cost of area with respect to the first design. Compared to a previously proposed FEFET based NVFF, the first design achieves 19% area reduction along with 96% lower backup energy and 9% lower restore energy, but at 14%-35% larger operation energy. The second design shows 11% lower area, 21% lower backup energy, 16% decrease in backup delay and similar operation energy but with a penalty of 17% and 19% in the restore energy and delay, respectively. System-level analysis of the proposed NVFFs in context of a state-of-the-art intermittently-powered system using real benchmarks yielded 5%-33% energy savings.","PeriodicalId":20456,"journal":{"name":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3218603.3218653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
In this work, we propose dual mode ferroelectric transistors (D-FEFETs) that exhibit dynamic tuning of operation between volatile and non-volatile modes with the help of a control signal. We utilize the unique features of D-FEFET to design two variants of non-volatile flip-flops (NVFFs). In both designs, D-FEFETs are operated in the volatile mode for normal operations and in the non-volatile mode to backup the state of the flip-flop during a power outage. The first design comprises of a truly embedded non-volatile element (D-FEFET) which enables a fully automatic backup operation. In the second design, we introduce need-based backup, which lowers energy during normal operation at the cost of area with respect to the first design. Compared to a previously proposed FEFET based NVFF, the first design achieves 19% area reduction along with 96% lower backup energy and 9% lower restore energy, but at 14%-35% larger operation energy. The second design shows 11% lower area, 21% lower backup energy, 16% decrease in backup delay and similar operation energy but with a penalty of 17% and 19% in the restore energy and delay, respectively. System-level analysis of the proposed NVFFs in context of a state-of-the-art intermittently-powered system using real benchmarks yielded 5%-33% energy savings.