Neural dipole localization by a hybrid nonlinear optimization algorithm

Sheng Ye, Jie Hu
{"title":"Neural dipole localization by a hybrid nonlinear optimization algorithm","authors":"Sheng Ye, Jie Hu","doi":"10.1109/ICMLC.2002.1167459","DOIUrl":null,"url":null,"abstract":"In the MEG inverse problem, the source localization procedure is to obtain dipole parameter solution that produces a calculated field pattern best matching the measured data. Here, a hybrid algorithm is described, i.e., Levenberg-Marquardt (LM) method for a fine scanning near the source area, and quasi-Newton (QN) method for a high-speed coarse scanning over a large area of the head. By a set of simulations, this presented algorithm can be more efficient both in computation time and sensitivity to the iterative initial value.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"43 6 1","pages":"1505-1506 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1167459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the MEG inverse problem, the source localization procedure is to obtain dipole parameter solution that produces a calculated field pattern best matching the measured data. Here, a hybrid algorithm is described, i.e., Levenberg-Marquardt (LM) method for a fine scanning near the source area, and quasi-Newton (QN) method for a high-speed coarse scanning over a large area of the head. By a set of simulations, this presented algorithm can be more efficient both in computation time and sensitivity to the iterative initial value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合非线性优化算法的神经偶极子定位
在磁相图反演问题中,源定位过程是获取偶极子参数解,使其产生与实测数据最匹配的计算场图。本文描述了一种混合算法,即在源区域附近进行精细扫描的Levenberg-Marquardt (LM)方法和在头部大面积范围内进行高速粗扫描的准牛顿(QN)方法。通过一组仿真,该算法在计算时间和对迭代初值的灵敏度上都具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1