{"title":"TLM computation of temperature distribution in human head exposed to electromagnetic waves","authors":"O. Makhlouf, M. Cueille, J. Dubard","doi":"10.1109/APS.2016.7696027","DOIUrl":null,"url":null,"abstract":"To simulate the temperature elevation in biological tissues exposed to the electromagnetic waves, the thermal aspect must be taken into account by solving the bioheat equation. In this paper, a new numerical scheme based on the TLM method, particularly suitable to highly heterogeneous environments, is applied for computing thermal distribution in a human head exposed to plane wave at 900 MHz. The model was proven to be unconditionally stable which allows using a larger time step than the one involved with FDTD or other TLM models. The numerical results are compared with those simulated with CST.","PeriodicalId":6496,"journal":{"name":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"53 1","pages":"637-638"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2016.7696027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
To simulate the temperature elevation in biological tissues exposed to the electromagnetic waves, the thermal aspect must be taken into account by solving the bioheat equation. In this paper, a new numerical scheme based on the TLM method, particularly suitable to highly heterogeneous environments, is applied for computing thermal distribution in a human head exposed to plane wave at 900 MHz. The model was proven to be unconditionally stable which allows using a larger time step than the one involved with FDTD or other TLM models. The numerical results are compared with those simulated with CST.