Dynamic Path Planning with Regular Triangulations

P. Brož, I. Kolingerová, Jakub Szkandera, Michal Zemek
{"title":"Dynamic Path Planning with Regular Triangulations","authors":"P. Brož, I. Kolingerová, Jakub Szkandera, Michal Zemek","doi":"10.22630/mgv.2014.23.3.6","DOIUrl":null,"url":null,"abstract":"Path planning is a well known problem that has been extensively studied in many scientific disciplines. In general, it defines a task of finding a path between two given spots in an abstract environment so that the path satisfies certain criterion of optimality. Although there are many methods solving this objective, they usually assume the examined space does not change in runtime. Modern applications, however, do not have to meet these requirements, especially in case of virtual reality or computer games. Therefore, we propose a general model for real-time path planning in dynamic environment where the obstacles can nondeterministically appear, disappear, change the position, orientation or even shape. The model uses a triangulation for dynamic space subdivision among bounding spheres of the obstacles and a heuristic algorithm to repair an already found path after any change of the scene. The presented solution is the first one using regular triangulation. At the price of the suboptimal result, it provides an efficient and fast way to plan a path with the maximal clearance among the moving and changing obstacles. In comparison to raster based techniques and methods using the Delaunay triangulation (Voronoi diagram), it requires less time to preprocess and generates paths with a larger clearance.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2014.23.3.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Path planning is a well known problem that has been extensively studied in many scientific disciplines. In general, it defines a task of finding a path between two given spots in an abstract environment so that the path satisfies certain criterion of optimality. Although there are many methods solving this objective, they usually assume the examined space does not change in runtime. Modern applications, however, do not have to meet these requirements, especially in case of virtual reality or computer games. Therefore, we propose a general model for real-time path planning in dynamic environment where the obstacles can nondeterministically appear, disappear, change the position, orientation or even shape. The model uses a triangulation for dynamic space subdivision among bounding spheres of the obstacles and a heuristic algorithm to repair an already found path after any change of the scene. The presented solution is the first one using regular triangulation. At the price of the suboptimal result, it provides an efficient and fast way to plan a path with the maximal clearance among the moving and changing obstacles. In comparison to raster based techniques and methods using the Delaunay triangulation (Voronoi diagram), it requires less time to preprocess and generates paths with a larger clearance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态路径规划与规则三角
路径规划是一个众所周知的问题,在许多科学学科中得到了广泛的研究。一般来说,它定义了一个任务,即在抽象环境中找到两个给定点之间的路径,使该路径满足某些最优性标准。虽然有许多方法可以解决这个问题,但它们通常假设被检查的空间在运行时不会改变。然而,现代应用程序并不一定要满足这些要求,特别是在虚拟现实或电脑游戏的情况下。因此,我们提出了一种用于动态环境中障碍物不确定性出现、消失、改变位置、方向甚至形状的实时路径规划的通用模型。该模型使用三角剖分法在障碍物边界球之间进行动态空间细分,并使用启发式算法在场景发生变化后修复已经找到的路径。提出的解决方案是第一个使用正则三角剖分的解决方案。以次优结果为代价,它提供了一种在移动和变化的障碍物之间规划具有最大间隙的路径的有效和快速的方法。与使用Delaunay三角剖分(Voronoi图)的基于光栅的技术和方法相比,它需要更少的预处理时间,并生成具有更大间隙的路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1