{"title":"Data, predictions, and decisions in support of people and society","authors":"E. Horvitz","doi":"10.1145/2623330.2630815","DOIUrl":null,"url":null,"abstract":"Deep societal benefits will spring from advances in data availability and in computational procedures for mining insights and inferences from large data sets. I will describe efforts to harness data for making predictions and guiding decisions, touching on work in transportation, healthcare, online services, and interactive systems. I will start with efforts to learn and field predictive models that forecast flows of traffic in greater city regions. Moving from the ground to the air, I will discuss fusing data from aircraft to make inferences about atmospheric conditions and using these results to enhance air transport. I will then focus on experiences with building and fielding predictive models in clinical medicine. I will show how inferences about outcomes and interventions can provide insights and guide decision making. Moving beyond data captured by hospitals, I will discuss the promise of transforming anonymized behavioral data drawn from web services into large-scale sensor networks for public health, including efforts to identify adverse effects of medications and to understand illness in populations. I will conclude by describing how we can use machine learning to leverage the complementarity of human and machine intellect to solve challenging problems in science and society.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2630815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Deep societal benefits will spring from advances in data availability and in computational procedures for mining insights and inferences from large data sets. I will describe efforts to harness data for making predictions and guiding decisions, touching on work in transportation, healthcare, online services, and interactive systems. I will start with efforts to learn and field predictive models that forecast flows of traffic in greater city regions. Moving from the ground to the air, I will discuss fusing data from aircraft to make inferences about atmospheric conditions and using these results to enhance air transport. I will then focus on experiences with building and fielding predictive models in clinical medicine. I will show how inferences about outcomes and interventions can provide insights and guide decision making. Moving beyond data captured by hospitals, I will discuss the promise of transforming anonymized behavioral data drawn from web services into large-scale sensor networks for public health, including efforts to identify adverse effects of medications and to understand illness in populations. I will conclude by describing how we can use machine learning to leverage the complementarity of human and machine intellect to solve challenging problems in science and society.