Permutation entropy and its variants for measuring temporal dependence

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Australian & New Zealand Journal of Statistics Pub Date : 2022-12-08 DOI:10.1111/anzs.12376
Xin Huang, Han Lin Shang, David Pitt
{"title":"Permutation entropy and its variants for measuring temporal dependence","authors":"Xin Huang,&nbsp;Han Lin Shang,&nbsp;David Pitt","doi":"10.1111/anzs.12376","DOIUrl":null,"url":null,"abstract":"<p>Permutation entropy (PE) is an ordinal-based non-parametric complexity measure for studying the temporal dependence structure in a linear or non-linear time series. Based on the PE, we propose a new measure, namely permutation dependence (PD), to quantify the strength of the temporal dependence in a univariate time series and remedy the major drawbacks of PE. We demonstrate that the PE and PD are viable and useful alternatives to conventional temporal dependence measures, such as the autocorrelation function (ACF) and mutual information (MI). Compared to the ACF, the PE and PD are not restricted in detecting the linear or quasi-linear serial correlation in an autoregression model. Instead, they can be viewed as non-parametric and non-linear alternatives since they do not require any prior knowledge or assumptions about the underlying structure. Compared to MI estimated by <i>k</i>-nearest neighbour, PE and PD show added sensitivity to structures of relatively weak strength. We compare the finite-sample performance of the PE and PD with the ACF and the MI estimated by <i>k</i>-nearest neighbour in a number of simulation studies to showcase their respective strengths and weaknesses. Moreover, their performance under non-stationarity is also investigated. Using high-frequency EUR/USD exchange rate returns data, we apply the PE and PD to study the temporal dependence structure in intraday foreign exchange.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 4","pages":"442-477"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12376","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12376","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Permutation entropy (PE) is an ordinal-based non-parametric complexity measure for studying the temporal dependence structure in a linear or non-linear time series. Based on the PE, we propose a new measure, namely permutation dependence (PD), to quantify the strength of the temporal dependence in a univariate time series and remedy the major drawbacks of PE. We demonstrate that the PE and PD are viable and useful alternatives to conventional temporal dependence measures, such as the autocorrelation function (ACF) and mutual information (MI). Compared to the ACF, the PE and PD are not restricted in detecting the linear or quasi-linear serial correlation in an autoregression model. Instead, they can be viewed as non-parametric and non-linear alternatives since they do not require any prior knowledge or assumptions about the underlying structure. Compared to MI estimated by k-nearest neighbour, PE and PD show added sensitivity to structures of relatively weak strength. We compare the finite-sample performance of the PE and PD with the ACF and the MI estimated by k-nearest neighbour in a number of simulation studies to showcase their respective strengths and weaknesses. Moreover, their performance under non-stationarity is also investigated. Using high-frequency EUR/USD exchange rate returns data, we apply the PE and PD to study the temporal dependence structure in intraday foreign exchange.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量时间依赖性的排列熵及其变体
置换熵(Permutation entropy, PE)是一种基于序数的非参数复杂度度量,用于研究线性或非线性时间序列中的时间依赖结构。在此基础上,我们提出了一种新的度量方法,即置换依赖(PD),以量化单变量时间序列中时间依赖性的强度,并弥补了置换依赖的主要缺陷。我们证明,PE和PD是可行的和有用的替代传统的时间依赖性措施,如自相关函数(ACF)和互信息(MI)。与ACF相比,PE和PD在检测自回归模型中的线性或拟线性序列相关方面不受限制。相反,它们可以被视为非参数和非线性替代方案,因为它们不需要任何关于底层结构的先验知识或假设。与k近邻估计的MI相比,PE和PD对强度相对较弱的结构表现出更高的敏感性。在许多模拟研究中,我们将PE和PD的有限样本性能与由k近邻估计的ACF和MI进行比较,以展示它们各自的优点和缺点。此外,还研究了它们在非平稳条件下的性能。利用欧元/美元的高频汇率回报数据,我们运用PE和PD来研究外汇交易的时间依赖结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
期刊最新文献
Issue Information PanIC: Consistent information criteria for general model selection problems Prediction de-correlated inference: A safe approach for post-prediction inference Telling Stories with Data: With Application in R. By Rohan Alexander. CRC Press. 2023. 622 pages. AU$129.60 (hardback). ISBN: 978-1-0321-3477-2. Full Bayesian analysis of triple seasonal autoregressive models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1