Storage Management in Process Networks using the Lexicographically Maximal Preimage

A. Turjan, B. Kienhuis
{"title":"Storage Management in Process Networks using the Lexicographically Maximal Preimage","authors":"A. Turjan, B. Kienhuis","doi":"10.1109/ASAP.2003.1212831","DOIUrl":null,"url":null,"abstract":"At the Leiden embedded research center, we are developing a compiler called Compaan that automatically translates signal processing applications written in Matlab into Kahn process networks (KPNs). In general, these signal processing applications are data-flow intensive, requiring large storage capacities, usually represented by matrices. An important issue in Compaan is the derivation of a memory management mechanism that allows for efficient interprocess communication. This mechanism has previously been published and is called the extended linearization model (ELM). The controller needed in the ELM is derived using the Ehrhart theory, leading to a computational intensive procedure. We present a new approach to derive the ELM controller, based on the notion of lexicographically maximal preimage. Using polytope manipulations and parametric integer linear programming techniques, we get less computational intensive and easier to be derived controller implementation for the ELM.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"23 1","pages":"75-85"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2003.1212831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

At the Leiden embedded research center, we are developing a compiler called Compaan that automatically translates signal processing applications written in Matlab into Kahn process networks (KPNs). In general, these signal processing applications are data-flow intensive, requiring large storage capacities, usually represented by matrices. An important issue in Compaan is the derivation of a memory management mechanism that allows for efficient interprocess communication. This mechanism has previously been published and is called the extended linearization model (ELM). The controller needed in the ELM is derived using the Ehrhart theory, leading to a computational intensive procedure. We present a new approach to derive the ELM controller, based on the notion of lexicographically maximal preimage. Using polytope manipulations and parametric integer linear programming techniques, we get less computational intensive and easier to be derived controller implementation for the ELM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用字典最大预映像的进程网络存储管理
在莱顿嵌入式研究中心,我们正在开发一种名为Compaan的编译器,它可以自动将用Matlab编写的信号处理应用程序转换为Kahn过程网络(kpn)。一般来说,这些信号处理应用是数据流密集型的,需要大的存储容量,通常用矩阵表示。Compaan中的一个重要问题是内存管理机制的派生,该机制允许高效的进程间通信。这种机制以前已经发表过,被称为扩展线性化模型(ELM)。ELM所需的控制器使用Ehrhart理论推导,导致计算密集的过程。提出了一种基于字典最大原像的ELM控制器的推导方法。利用多面体操作和参数整数线性规划技术,我们可以减少计算量,更容易推导出ELM的控制器实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the Conference Chairs - ASAP 2020 Message from the ASAP 2016 chairs An IEEE 754 double-precision floating-point multiplier for denormalized and normalized floating-point numbers Application-set driven exploration for custom processor architectures Stochastic circuit design and performance evaluation of vector quantization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1