Another Critical Look at Three-Phase Catalysis

X. Ni
{"title":"Another Critical Look at Three-Phase Catalysis","authors":"X. Ni","doi":"10.1055/s-0040-1722219","DOIUrl":null,"url":null,"abstract":"Abstract Three-phase catalysis, for example, hydrogenation, is a special branch of chemical reactions involving a hydrogen reactant (gas) and a solvent (liquid) in the presence of a metal porous catalyst (solid) to produce a liquid product. Currently, many reactors are being used for three-phase catalysis from packed bed to slurry vessel; the uniqueness for this type of reaction in countless processes is the requirement of transferring gas into liquid, as yet there is not a unified system of quantifying and comparing reactor performances. This article reviews current methodologies in carrying out such heterogeneous catalysis in different reactors and focuses on how to enhance reactor performance from gas transfer perspectives. This article also suggests that the mass transfer rate over energy dissipation may represent a fairer method for comparison of reactor performance accounting for different types/designs of reactors and catalyst structures as well as operating conditions.","PeriodicalId":19767,"journal":{"name":"Pharmaceutical Fronts","volume":"9 1","pages":"e117 - e127"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Fronts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0040-1722219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Three-phase catalysis, for example, hydrogenation, is a special branch of chemical reactions involving a hydrogen reactant (gas) and a solvent (liquid) in the presence of a metal porous catalyst (solid) to produce a liquid product. Currently, many reactors are being used for three-phase catalysis from packed bed to slurry vessel; the uniqueness for this type of reaction in countless processes is the requirement of transferring gas into liquid, as yet there is not a unified system of quantifying and comparing reactor performances. This article reviews current methodologies in carrying out such heterogeneous catalysis in different reactors and focuses on how to enhance reactor performance from gas transfer perspectives. This article also suggests that the mass transfer rate over energy dissipation may represent a fairer method for comparison of reactor performance accounting for different types/designs of reactors and catalyst structures as well as operating conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三相催化的另一个关键观点
三相催化,如加氢,是化学反应的一个特殊分支,涉及氢反应物(气体)和溶剂(液体)在金属多孔催化剂(固体)的存在下产生液体产物。目前,许多反应器用于从填料床到料浆容器的三相催化;这类反应在无数过程中的独特之处在于需要将气体转化为液体,目前还没有一个统一的系统来量化和比较反应器的性能。本文综述了目前在不同反应器中进行这种多相催化的方法,并着重从气体传递的角度介绍了如何提高反应器的性能。本文还提出,考虑到不同类型/设计的反应器和催化剂结构以及操作条件,传质率除以能量耗散可能是比较反应器性能的一种更公平的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
15 weeks
期刊最新文献
Recent Advances in Mitochondrial Pyruvate Carrier Inhibitors Discovery of a Novel Benzimidazole Necroptosis Inhibitor from an In-House Compound Library Research Strategies for Precise Manipulation of Micro/Nanoparticle Drug Delivery Systems Using Microfluidic Technology: A Review Advances in Tumor Targeting Biomimetic Drug Delivery Systems: A Promising Approach for Antitumor Therapy 3D Printing Pharmaceuticals: Current Status and Future Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1