Development of a Handheld System for Liquor Authenticity Detection Based on Laser Spectroscopy Technique

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-04-08 DOI:10.1155/2022/4404749
Yuchen Tian, Yundong Sun, Yansong Wang, Xiaofang Li, Dongjie Zhu
{"title":"Development of a Handheld System for Liquor Authenticity Detection Based on Laser Spectroscopy Technique","authors":"Yuchen Tian, Yundong Sun, Yansong Wang, Xiaofang Li, Dongjie Zhu","doi":"10.1155/2022/4404749","DOIUrl":null,"url":null,"abstract":"In this paper, a handheld liquor authenticity detection system is demonstrated based on the laser spectroscopy technique, which consists of a handheld laser spectrometer and a mobile phone display terminal. In this system, the semiconductor laser is integrated into the spectrometer and the laser beam is further angled to the optical axis of the spectrometer to avoid interference of the fluorescence generated by the bottle wall. During the system operation, the laser excites the tested liquor to generate fluorescence and Raman spectroscopy signals, which are digitized and wirelessly transmitted by Wi-Fi to the Android mobile terminal. After the image processing by the mobile phone APP, the tested liquor spectrum curve is obtained. At the same time, based on the standard liquor spectrum curve stored in the database, the Pearson correlation coefficient is calculated and the matching similarity is given. In addition, this paper proposes a calibration method based on pure water Raman intensity to achieve accurate measurement of fluorescence intensity and minimize the influence of fluorescence intensity saturation on the measurement results. In the experiment, we measured the similarity of 12 brands of Chinese liquor by using our self-developed handheld laser spectrometer. Their authenticity of liquor could be given accurately and effectively.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/4404749","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a handheld liquor authenticity detection system is demonstrated based on the laser spectroscopy technique, which consists of a handheld laser spectrometer and a mobile phone display terminal. In this system, the semiconductor laser is integrated into the spectrometer and the laser beam is further angled to the optical axis of the spectrometer to avoid interference of the fluorescence generated by the bottle wall. During the system operation, the laser excites the tested liquor to generate fluorescence and Raman spectroscopy signals, which are digitized and wirelessly transmitted by Wi-Fi to the Android mobile terminal. After the image processing by the mobile phone APP, the tested liquor spectrum curve is obtained. At the same time, based on the standard liquor spectrum curve stored in the database, the Pearson correlation coefficient is calculated and the matching similarity is given. In addition, this paper proposes a calibration method based on pure water Raman intensity to achieve accurate measurement of fluorescence intensity and minimize the influence of fluorescence intensity saturation on the measurement results. In the experiment, we measured the similarity of 12 brands of Chinese liquor by using our self-developed handheld laser spectrometer. Their authenticity of liquor could be given accurately and effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于激光光谱技术的手持式白酒真伪检测系统的研制
本文演示了一种基于激光光谱技术的手持式白酒真伪检测系统,该系统由手持式激光光谱仪和手机显示终端组成。在该系统中,半导体激光器被集成到光谱仪中,激光束进一步与光谱仪的光轴成角度,以避免瓶壁产生的荧光的干扰。在系统运行过程中,激光激发被测液体产生荧光和拉曼光谱信号,并将其数字化,通过Wi-Fi无线传输到Android移动终端。通过手机APP进行图像处理后,得到被测白酒谱曲线。同时,根据数据库中存储的标准白酒谱曲线,计算Pearson相关系数,给出匹配相似度。此外,本文提出了一种基于纯水拉曼强度的校准方法,以实现荧光强度的精确测量,并最大限度地减少荧光强度饱和度对测量结果的影响。在实验中,我们使用自主研发的手持式激光光谱仪测量了12种中国白酒的相似度。它们能准确有效地给出白酒的真伪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1