Design and optimization of molten salt reactor monitoring system based on digital twin technology

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY Kerntechnik Pub Date : 2022-11-22 DOI:10.1515/kern-2022-0055
Wen-qing Liu, Lifeng Han, Li Huang
{"title":"Design and optimization of molten salt reactor monitoring system based on digital twin technology","authors":"Wen-qing Liu, Lifeng Han, Li Huang","doi":"10.1515/kern-2022-0055","DOIUrl":null,"url":null,"abstract":"Abstract The nuclear power industry is developing rapidly toward intelligence and scale, the digital twin was combined with the industrial interconnection technology to solve the key problems in the application of the digital twin, such as the three-dimensional model presentation, real-time data docking, and the improvement of intelligence degree. Based on the example of Thorium Molten Salt Reactor-Solid Fuel (TMSR-SF0). Firstly, the three-dimensional twin of nuclear power equipment is constructed and the real-time update of twin data is realized based on the Node-EPICS event driver and Websocket communication protocol; Then, the communication interface with MySQL database is developed to realize the storage and management of data; Finally, the PID control system of molten salt circuit pipeline is integrated with back propagation neural network algorithm, and the efficiency and precision of temperature control system are improved by self-modification of weight. The results show that this system has the functions of three-dimensional display, network communication, data storage, and parameter optimization, and the data update cycle is raised to 100 ms, which can provide a certain reference value for the digital transformation of the nuclear monitoring field.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"207 1","pages":"651 - 660"},"PeriodicalIF":0.4000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The nuclear power industry is developing rapidly toward intelligence and scale, the digital twin was combined with the industrial interconnection technology to solve the key problems in the application of the digital twin, such as the three-dimensional model presentation, real-time data docking, and the improvement of intelligence degree. Based on the example of Thorium Molten Salt Reactor-Solid Fuel (TMSR-SF0). Firstly, the three-dimensional twin of nuclear power equipment is constructed and the real-time update of twin data is realized based on the Node-EPICS event driver and Websocket communication protocol; Then, the communication interface with MySQL database is developed to realize the storage and management of data; Finally, the PID control system of molten salt circuit pipeline is integrated with back propagation neural network algorithm, and the efficiency and precision of temperature control system are improved by self-modification of weight. The results show that this system has the functions of three-dimensional display, network communication, data storage, and parameter optimization, and the data update cycle is raised to 100 ms, which can provide a certain reference value for the digital transformation of the nuclear monitoring field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数字孪生技术的熔盐堆监测系统设计与优化
摘要在核电工业向智能化、规模化快速发展的背景下,将数字孪生技术与工业互联技术相结合,解决了数字孪生技术应用中的三维模型呈现、实时数据对接、智能化程度提升等关键问题。以钍熔盐堆-固体燃料(TMSR-SF0)为例。首先,基于Node-EPICS事件驱动和Websocket通信协议,构建了核电设备的三维孪生体,实现了孪生体数据的实时更新;然后,开发了与MySQL数据库的通信接口,实现了数据的存储和管理;最后,将熔盐回路管路的PID控制系统与反向传播神经网络算法相结合,通过权值的自修正来提高温度控制系统的效率和精度。结果表明,该系统具有三维显示、网络通信、数据存储、参数优化等功能,数据更新周期提高到100 ms,可为核监测领域的数字化转型提供一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
期刊最新文献
Evaluation of the optimum safety performance of the nuclear reactor compact grounding system under lightning strikes and ground fault CFD and machine learning based hybrid model for passive dilution of helium in a top ventilated compartment Probing 6He induced reactions with nuclear level density Neutronic and thermal-hydraulic assessment of the TRR with new core designed based on tubular fuels An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1