Multi-objective optimization problems: Method and application

Fatimah Sham, Ismail, K. Lumpur., Malaysia
{"title":"Multi-objective optimization problems: Method and application","authors":"Fatimah Sham, Ismail, K. Lumpur., Malaysia","doi":"10.1109/ICMSAO.2011.5775623","DOIUrl":null,"url":null,"abstract":"Self organizing genetic algorithm (SOGA) is a class of heuristic multi-objective optimization method that has high capabilities for solving multiple conflicting objective functions. This paper presents an application of SOGA for optimizing multi-objectives components placement of multi voltage regulator (MVR) system on printed circuit board by considering multi-constraint parameters. The simulation results, which are developed based on experimental measurement, show that the SOGA can propose better optimal solution compared to the initial design.","PeriodicalId":6383,"journal":{"name":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Modeling, Simulation and Applied Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSAO.2011.5775623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Self organizing genetic algorithm (SOGA) is a class of heuristic multi-objective optimization method that has high capabilities for solving multiple conflicting objective functions. This paper presents an application of SOGA for optimizing multi-objectives components placement of multi voltage regulator (MVR) system on printed circuit board by considering multi-constraint parameters. The simulation results, which are developed based on experimental measurement, show that the SOGA can propose better optimal solution compared to the initial design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多目标优化问题:方法与应用
自组织遗传算法(SOGA)是一类启发式多目标优化方法,具有求解多个相互冲突的目标函数的能力。本文提出了一种基于多约束参数的SOGA优化多电压调节器(MVR)系统多目标元件在印刷电路板上布局的方法。基于实验测量的仿真结果表明,与初始设计相比,SOGA可以给出更好的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact and Scope of Electric Power Generation Demand Using Renewable Energy Resources Due to COVID-19 Introductory Lectures on Convex Optimization - A Basic Course Development of energy harvesting device using piezoelectric material Modelling and simulation of solar chimney power plant performances in southern region of Algeria A sequential approach for fault detection and identification of vehicles' ultrasonic parking sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1