Ensemble learning-based classification on local patches from magnetic resonance images to detect iron depositions in the brain

Beshiba Wilson, J. Dhas, R. Sreedharan, Ram P. Krish
{"title":"Ensemble learning-based classification on local patches from magnetic resonance images to detect iron depositions in the brain","authors":"Beshiba Wilson, J. Dhas, R. Sreedharan, Ram P. Krish","doi":"10.1504/IJBIC.2021.116608","DOIUrl":null,"url":null,"abstract":"Iron deposition in the brain has been observed with normal aging and is associated with neurodegenerative diseases. The automated classification of brain magnetic resonance images (MRI) based on iron deposition in basal ganglia region of the brain has not been performed, to our knowledge. It is very difficult to analyse iron regions in brain using simple MRI techniques. The MRI sequence namely susceptibility weighted imaging (SWI) helps to distinguish brain iron regions. The objective of our work is to investigate the iron regions in selected areas of basal ganglia region of brain and classify MR images. The study included a total of 60 MRI images which consists of 40 subjects with iron region and 20 subjects of healthy controls. We performed Gaussian smoothing followed by construction of 40 localised patches of each MR image based on iron and normal regions. Grey level co-occurrence matrix (GLCM) features are extracted from the patches and fed to random forest (RF) classifier for patch-based classification of iron region. Training of data patch features was done by random forest classifier and the performance of classifier in terms of accuracy was measured. The experimental results show that the proposed localised patch-based approach for classification of brain iron images using random forest classifier achieved 96.25% classification accuracy in identifying normal and iron regions from brain MR sequences.","PeriodicalId":13636,"journal":{"name":"Int. J. Bio Inspired Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bio Inspired Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBIC.2021.116608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Iron deposition in the brain has been observed with normal aging and is associated with neurodegenerative diseases. The automated classification of brain magnetic resonance images (MRI) based on iron deposition in basal ganglia region of the brain has not been performed, to our knowledge. It is very difficult to analyse iron regions in brain using simple MRI techniques. The MRI sequence namely susceptibility weighted imaging (SWI) helps to distinguish brain iron regions. The objective of our work is to investigate the iron regions in selected areas of basal ganglia region of brain and classify MR images. The study included a total of 60 MRI images which consists of 40 subjects with iron region and 20 subjects of healthy controls. We performed Gaussian smoothing followed by construction of 40 localised patches of each MR image based on iron and normal regions. Grey level co-occurrence matrix (GLCM) features are extracted from the patches and fed to random forest (RF) classifier for patch-based classification of iron region. Training of data patch features was done by random forest classifier and the performance of classifier in terms of accuracy was measured. The experimental results show that the proposed localised patch-based approach for classification of brain iron images using random forest classifier achieved 96.25% classification accuracy in identifying normal and iron regions from brain MR sequences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成学习的磁共振图像局部斑块分类检测脑内铁沉积
铁在大脑中的沉积已被观察到与正常衰老和神经退行性疾病有关。据我们所知,基于脑基底节区铁沉积的脑磁共振图像(MRI)自动分类尚未实现。用简单的核磁共振成像技术分析脑铁区是非常困难的。MRI序列即敏感性加权成像(SWI)有助于区分脑铁区域。我们的工作目的是研究脑基底节区选定区域的铁区,并对MR图像进行分类。本研究共包括60张MRI图像,其中铁区40例,健康对照20例。我们对每个MR图像进行高斯平滑,然后基于铁区和法线区构建40个局部补丁。从斑块中提取灰度共生矩阵(GLCM)特征,并将其输入随机森林(RF)分类器进行基于斑块的铁区分类。采用随机森林分类器对数据斑块特征进行训练,并对分类器的准确率进行了测试。实验结果表明,本文提出的基于局部斑块的脑铁图像随机森林分类方法在脑MR序列中正常区和铁区分类准确率达到96.25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the effect of particle update modes in particle swarm optimisation Application of cohort intelligence algorithm for goal programming problems with improved constraint handling method Coke price prediction approach based on dense GRU and opposition-based learning salp swarm algorithm Alligator optimisation algorithm for solving unconstrainted optimisation problems A novel rough semi-supervised k-means algorithm for text clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1