D. Zhu, M. Cui, Yandong Chen, Yongli Wang, Yun-hong Ding, C. Xiong, C. Liang, Fei Yao, Xiaoyong Wang, Wenxin Cai, Yanhui He, Zongfa Ling, Dayong Wang
{"title":"First Successful Application of Multi-Stage Proppant Fracturing on Horizontal Well in Carbonate Reservoirs in Iraq","authors":"D. Zhu, M. Cui, Yandong Chen, Yongli Wang, Yun-hong Ding, C. Xiong, C. Liang, Fei Yao, Xiaoyong Wang, Wenxin Cai, Yanhui He, Zongfa Ling, Dayong Wang","doi":"10.2118/205281-ms","DOIUrl":null,"url":null,"abstract":"\n The carbonate reservoir S is a giant limestone reservoir in H Oilfield, Iraq. Although the reserves account for 25%, the production contribution is only 0.4% to the total oilfield production due to poor petrophysical properties. Accordingly, the first proppant fracturing on vertical well was successfully executed in December 2016, which has already achieved a steady production period over than 3 years. In order to further improve the productivity, the first multi-stage proppant fracturing(MSPF) on horizontal well(SH01X) was successfully applied in November 2019, a technique which is rarely reported for porous limestone reservoir in the Middle East.\n Proppant fracturing in carbonate reservoirs is a technique difficulty worldwide, especially this is a lack of experiences in the Middle East. To ensure the success of this campaign, a holistic technical study including geology evaluation, reservoir performance analysis, drilling trajectory design, completion and fracturing technique design have been carried out based on principle of \"geology-engineering integration\". This paper will present a comprehensive illustration including treatment design (main completion-fracturing technique, total scale, fracturing fluid, proppant), job execution (mini-frac, main-frac) and post-frac production performance for this successful campaign.\n True vertical depth (TVD) of Well SH01X is 2720 m and the horizontal section length is 811 m. Based on the main technique of multi-stage proppant fracturing with open hole packers and sliding sleeves, totally 3784.3 m3 fracturing fluid and 452 m3 proppant were pumped in 8 stages. The test production was 3214 BOPD (choke size: 40/64\", wellhead pressure: 970 psi). A historical breakthrough in the productivity of S reservoir has been achieved by the campaign. The post-frac evaluation shows that the treatment parameters are consistent with the design. The connectivity between artificial fractures and formation is greatly improved, and the stimulation effect is significant. Currently the \"production under controlled pressure\" mode has been executed and the stable production under stimulation target rate has been maintained. The systematic \"geology-engineering integration\" workflow is of significance to the success of the treatment as well as the stimulation effect.\n MSPF is planned to be a game-changing technique to develop the huge reserves of S reservoir. The experience gained from this case could provide theoretical as well as practical references for similar reservoirs in the Middle East.","PeriodicalId":11087,"journal":{"name":"Day 1 Tue, January 11, 2022","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, January 11, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205281-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The carbonate reservoir S is a giant limestone reservoir in H Oilfield, Iraq. Although the reserves account for 25%, the production contribution is only 0.4% to the total oilfield production due to poor petrophysical properties. Accordingly, the first proppant fracturing on vertical well was successfully executed in December 2016, which has already achieved a steady production period over than 3 years. In order to further improve the productivity, the first multi-stage proppant fracturing(MSPF) on horizontal well(SH01X) was successfully applied in November 2019, a technique which is rarely reported for porous limestone reservoir in the Middle East.
Proppant fracturing in carbonate reservoirs is a technique difficulty worldwide, especially this is a lack of experiences in the Middle East. To ensure the success of this campaign, a holistic technical study including geology evaluation, reservoir performance analysis, drilling trajectory design, completion and fracturing technique design have been carried out based on principle of "geology-engineering integration". This paper will present a comprehensive illustration including treatment design (main completion-fracturing technique, total scale, fracturing fluid, proppant), job execution (mini-frac, main-frac) and post-frac production performance for this successful campaign.
True vertical depth (TVD) of Well SH01X is 2720 m and the horizontal section length is 811 m. Based on the main technique of multi-stage proppant fracturing with open hole packers and sliding sleeves, totally 3784.3 m3 fracturing fluid and 452 m3 proppant were pumped in 8 stages. The test production was 3214 BOPD (choke size: 40/64", wellhead pressure: 970 psi). A historical breakthrough in the productivity of S reservoir has been achieved by the campaign. The post-frac evaluation shows that the treatment parameters are consistent with the design. The connectivity between artificial fractures and formation is greatly improved, and the stimulation effect is significant. Currently the "production under controlled pressure" mode has been executed and the stable production under stimulation target rate has been maintained. The systematic "geology-engineering integration" workflow is of significance to the success of the treatment as well as the stimulation effect.
MSPF is planned to be a game-changing technique to develop the huge reserves of S reservoir. The experience gained from this case could provide theoretical as well as practical references for similar reservoirs in the Middle East.