{"title":"Waste Paper Ash as Additives for High Strength Concrete Mix 45 MPa","authors":"Subanndi, F. Agustina, Vebrian, Rafidah Azzahra","doi":"10.18280/acsm.440203","DOIUrl":null,"url":null,"abstract":"Received: 22 November 2019 Accepted: 12 February 2020 High strength concrete is very widely used today to support the construction of buildings, roads, dams, bridges and so on. To make high quality concrete, additional material is needed as a concrete mixture, the added material today is very much in the market as well as added ingredients derived from fly ash, and rice husk, especially rice husk is most widely used as a mixture in making concrete, due to the chemical content of SiO2 contained in rice husk ash. In this study we made high strength concrete using ash derived from waste paper. Paper ash was burned manually and then filtered using sieve number 150. Paper ash was then tested for its chemical content. The results of the chemical content test derived from paper waste ash have a CaO of 92.70 while SiO2 is only 2.63%. The making of test specimens was made as many as 90 pieces with some additional variations of noble ash from 0%, 5%, 10%, 15%, 20%, and 25%. Concrete compressive strength test results with a code of 0% could not achieve the quality plan of 45 MPa, while the addition of ash by 5% reached 41 MPa compressive strength more, the highest compressive strength produced by a mixture of 10% paper ash which achieved a compressive strength of more than 45 MPa plan. Whereas specimens with a mixture of 15%, 20%, and 25% produce concrete with compressive strength below 36 MPa. From the results of the study it can be concluded that the use of 5% and 10% waste paper ash can increase the compressive strength of concrete. Ash from paper waste can be an alternative material added to the concrete mixture.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"53 1","pages":"91-96"},"PeriodicalIF":0.6000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Received: 22 November 2019 Accepted: 12 February 2020 High strength concrete is very widely used today to support the construction of buildings, roads, dams, bridges and so on. To make high quality concrete, additional material is needed as a concrete mixture, the added material today is very much in the market as well as added ingredients derived from fly ash, and rice husk, especially rice husk is most widely used as a mixture in making concrete, due to the chemical content of SiO2 contained in rice husk ash. In this study we made high strength concrete using ash derived from waste paper. Paper ash was burned manually and then filtered using sieve number 150. Paper ash was then tested for its chemical content. The results of the chemical content test derived from paper waste ash have a CaO of 92.70 while SiO2 is only 2.63%. The making of test specimens was made as many as 90 pieces with some additional variations of noble ash from 0%, 5%, 10%, 15%, 20%, and 25%. Concrete compressive strength test results with a code of 0% could not achieve the quality plan of 45 MPa, while the addition of ash by 5% reached 41 MPa compressive strength more, the highest compressive strength produced by a mixture of 10% paper ash which achieved a compressive strength of more than 45 MPa plan. Whereas specimens with a mixture of 15%, 20%, and 25% produce concrete with compressive strength below 36 MPa. From the results of the study it can be concluded that the use of 5% and 10% waste paper ash can increase the compressive strength of concrete. Ash from paper waste can be an alternative material added to the concrete mixture.
期刊介绍:
The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.