An Improved Fuzzy TOPSIS Method with a New Ranking Index

S. Sadabadi, A. Hadi-Vencheh, A. Jamshidi, Mehrdad Jalali
{"title":"An Improved Fuzzy TOPSIS Method with a New Ranking Index","authors":"S. Sadabadi, A. Hadi-Vencheh, A. Jamshidi, Mehrdad Jalali","doi":"10.1142/s0219622021500620","DOIUrl":null,"url":null,"abstract":"Owing to vague concepts frequently represented in decision data, the crisp values are inadequate to model real-life situations. In this paper, the rating of each alternative and the weight of each criterion is described by linguistic terms which can be expressed in triangular fuzzy numbers. Next, we focus on fuzzy TOPSIS (FTOPSIS) method. We show that, however, the conventional FTOPSIS is interesting, but it suffers from some flaws. The shortcomings of classical FTOPSIS are shown and some solutions are given. Further, a new similarity index is proposed and then is illustrated using numerical examples. By treating the separations of an alternative from the fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal solution (FNIS) as “cost” criterion and “benefit” criterion, respectively, we reduce the original fuzzy multiple criteria decision making (FMCDM) problem to a new one with two criteria. Illustrative examples are given to show the advantages of the proposed approach.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"23 1","pages":"615-641"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Owing to vague concepts frequently represented in decision data, the crisp values are inadequate to model real-life situations. In this paper, the rating of each alternative and the weight of each criterion is described by linguistic terms which can be expressed in triangular fuzzy numbers. Next, we focus on fuzzy TOPSIS (FTOPSIS) method. We show that, however, the conventional FTOPSIS is interesting, but it suffers from some flaws. The shortcomings of classical FTOPSIS are shown and some solutions are given. Further, a new similarity index is proposed and then is illustrated using numerical examples. By treating the separations of an alternative from the fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal solution (FNIS) as “cost” criterion and “benefit” criterion, respectively, we reduce the original fuzzy multiple criteria decision making (FMCDM) problem to a new one with two criteria. Illustrative examples are given to show the advantages of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于新排序指标的改进模糊TOPSIS方法
由于决策数据中经常表示模糊的概念,清晰的值不足以模拟现实生活中的情况。本文用三角模糊数表示的语言项来描述每个备选方案的评级和每个准则的权重。接下来,我们重点研究模糊TOPSIS (FTOPSIS)方法。然而,我们表明,传统的FTOPSIS很有趣,但它存在一些缺陷。指出了经典FTOPSIS算法的不足,并给出了一些解决方案。在此基础上,提出了一种新的相似度指标,并用数值算例进行了说明。通过将模糊正理想解(FPIS)和模糊负理想解(FNIS)的选择分离分别视为“成本”准则和“效益”准则,将原来的模糊多准则决策问题简化为一个新的双准则决策问题。举例说明了所提方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1