Rui-Juan Bai, Yunpeng Zhao, Cuiying Lu, Yu Meng, Wen-wen Gao, Yan Wang, Rui Dang, Miao Mu, Jinxi Wang, Y. Jiao
{"title":"Sonochemical synthesis and electrochemical performance of reduced graphene oxide/cerium dioxide nanocomposites","authors":"Rui-Juan Bai, Yunpeng Zhao, Cuiying Lu, Yu Meng, Wen-wen Gao, Yan Wang, Rui Dang, Miao Mu, Jinxi Wang, Y. Jiao","doi":"10.1177/17475198231158745","DOIUrl":null,"url":null,"abstract":"Reduced graphene oxide/cerium dioxide (is synthesized by a simple sonochemical route. The morphology and chemical structure of the nanocomposites are characterized by scanning electron microscopy, energy disperse spectroscopy, insitu infrared spectroscopy, and X-ray diffraction. The electrochemical properties of a fabricat reduced graphene oxide/cerium dioxide2 nanocomposite electrode examined by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The results indicate that the reduced graphene oxide can prevent the aggregation of cerium dioxide nanoparticles; meanwhile, the reduced graphene oxide/cerium dioxide-3 nanocomposite electrode exhibits excellent electrochemical performance with a high specific capacitance of 185 F·g−1 at 0.5 A·g−1, a high rate capability, and good reversibility, which results from the synergism and coupling between reduced graphene oxide nanosheets and cerium dioxide nanoparticles.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198231158745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Reduced graphene oxide/cerium dioxide (is synthesized by a simple sonochemical route. The morphology and chemical structure of the nanocomposites are characterized by scanning electron microscopy, energy disperse spectroscopy, insitu infrared spectroscopy, and X-ray diffraction. The electrochemical properties of a fabricat reduced graphene oxide/cerium dioxide2 nanocomposite electrode examined by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The results indicate that the reduced graphene oxide can prevent the aggregation of cerium dioxide nanoparticles; meanwhile, the reduced graphene oxide/cerium dioxide-3 nanocomposite electrode exhibits excellent electrochemical performance with a high specific capacitance of 185 F·g−1 at 0.5 A·g−1, a high rate capability, and good reversibility, which results from the synergism and coupling between reduced graphene oxide nanosheets and cerium dioxide nanoparticles.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.