Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool

Felix K. Bäuerle, Á. Zotter, G. Schreiber
{"title":"Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool","authors":"Felix K. Bäuerle, Á. Zotter, G. Schreiber","doi":"10.1093/protein/gzw053","DOIUrl":null,"url":null,"abstract":"With computer-based data-fitting methods becoming a standard tool in biochemistry, progress curve analysis of enzyme kinetics is a feasible, yet seldom used tool. Here we present a versatile Matlab-based tool (PCAT) to analyze catalysis progress curves with three complementary model approaches. The first two models are based on the known closed-form solution for this problem: the first describes the required Lambert W function with an analytical approximation and the second provides a numerical solution of the Lambert W function. The third model is a direct simulation of the enzyme kinetics. Depending on the chosen model, the tools excel in speed, accuracy or initial value requirements. Using simulated and experimental data, we show the strengths and pitfalls of the different fitting models. Direct simulation proves to have the highest level of accuracy, but it also requires reasonable initial values to converge. Finally, we propose a standard procedure to obtain optimized enzyme kinetic parameters from single progress curves.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"98 1 1","pages":"149–156"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

With computer-based data-fitting methods becoming a standard tool in biochemistry, progress curve analysis of enzyme kinetics is a feasible, yet seldom used tool. Here we present a versatile Matlab-based tool (PCAT) to analyze catalysis progress curves with three complementary model approaches. The first two models are based on the known closed-form solution for this problem: the first describes the required Lambert W function with an analytical approximation and the second provides a numerical solution of the Lambert W function. The third model is a direct simulation of the enzyme kinetics. Depending on the chosen model, the tools excel in speed, accuracy or initial value requirements. Using simulated and experimental data, we show the strengths and pitfalls of the different fitting models. Direct simulation proves to have the highest level of accuracy, but it also requires reasonable initial values to converge. Finally, we propose a standard procedure to obtain optimized enzyme kinetic parameters from single progress curves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用新的进展曲线分析工具直接测定单反应的酶动力学参数
随着基于计算机的数据拟合方法成为生物化学的标准工具,酶动力学的进程曲线分析是一种可行但很少使用的工具。在这里,我们提出了一个多功能的基于matlab的工具(PCAT)来分析催化过程曲线与三种互补的模型方法。前两个模型基于该问题已知的封闭形式解:第一个模型用解析近似描述所需的Lambert W函数,第二个模型提供Lambert W函数的数值解。第三种模型是对酶动力学的直接模拟。根据所选择的模型,这些工具在速度、精度或初始值要求方面表现出色。通过模拟和实验数据,我们展示了不同拟合模型的优点和缺陷。直接模拟被证明具有最高的精度,但它也需要合理的初始值来收敛。最后,我们提出了从单个过程曲线获得优化酶动力学参数的标准程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supercharged Phosphotriesterase for improved Paraoxon activity Engineered FHA domains can bind to a variety of Phosphothreonine-containing peptides Modular and integrative activity reporters enhance biochemical studies in the yeast ER Protein sequence design on given backbones with deep learning Growing ecosystem of deep learning methods for modeling protein–protein interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1