{"title":"Verification study for an empirical rule in diverse helical conformational behaviors of asymmetric 1,2-diacyl-sn-glycerols in the solution state","authors":"Yoshihiro Nishida , Yuan Mengfei , Kaito Fujisawa , Sakura Kitagawa , Hirofumi Dohi , Hirotaka Uzawa","doi":"10.1016/j.tetasy.2017.09.021","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cell-membrane glycerophospholipids and </span>glycolipids have a common asymmetric skeleton of 1,2-diacyl-</span><em>sn</em><span>-glycerols. The 1,2-diacyl moiety in solutions permits a rapid equilibrium among three helical conformers, namely gt(+), gg(−), and tg, to display diverse conformational properties. The conformational property changes variably not only by head groups at the </span><em>sn</em><span>-3 position, but also by the solvent conditions applied. Recently, we came across an empirical rule in the conformational diversity in the solution state when we assumed the term of ‘helical disparity’ for the equilibrium between gt(+) and gg(−) conformers with reversed helical signs for each other. The sign and magnitude of the helical disparity (%) governs the (+)- or (−)-chirality around the lipid tail and corresponds to the magnitude of the exciton couplet CD (circular dichroism) bands. The empirical rule expresses that the disparity (%) changes linearly by the function of gt(+) population (%). Herein, the rule was verified by </span><sup>1</sup>H NMR spectroscopy using different types of 1,2-diacyl-<em>sn</em>-glycerols as model compounds. The present paper describes that the rule is formulated with a general equation (Eq-1): ‘helical disparity (%)’ = [gt(+)−gg(−)] (%) = A[gt(+)−B], in which A and B are constants taking values around 1.3 and 38, respectively. This rule is maintained regardless of the 1,2-diacyl and <em>sn</em>-3 substituent groups as far as examined here, while affording several exceptions. With Eq-1 (A = 1.3, B = 38), a conformational diagram can be obtained. This allows us to overview the diverse helical conformational properties of the asymmetric 1,2-diacyl-<em>sn</em>-glycerols in the solutions state.</p></div>","PeriodicalId":22237,"journal":{"name":"Tetrahedron, asymmetry","volume":"28 10","pages":"Pages 1435-1443"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tetasy.2017.09.021","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron, asymmetry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957416617303609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 1
Abstract
Cell-membrane glycerophospholipids and glycolipids have a common asymmetric skeleton of 1,2-diacyl-sn-glycerols. The 1,2-diacyl moiety in solutions permits a rapid equilibrium among three helical conformers, namely gt(+), gg(−), and tg, to display diverse conformational properties. The conformational property changes variably not only by head groups at the sn-3 position, but also by the solvent conditions applied. Recently, we came across an empirical rule in the conformational diversity in the solution state when we assumed the term of ‘helical disparity’ for the equilibrium between gt(+) and gg(−) conformers with reversed helical signs for each other. The sign and magnitude of the helical disparity (%) governs the (+)- or (−)-chirality around the lipid tail and corresponds to the magnitude of the exciton couplet CD (circular dichroism) bands. The empirical rule expresses that the disparity (%) changes linearly by the function of gt(+) population (%). Herein, the rule was verified by 1H NMR spectroscopy using different types of 1,2-diacyl-sn-glycerols as model compounds. The present paper describes that the rule is formulated with a general equation (Eq-1): ‘helical disparity (%)’ = [gt(+)−gg(−)] (%) = A[gt(+)−B], in which A and B are constants taking values around 1.3 and 38, respectively. This rule is maintained regardless of the 1,2-diacyl and sn-3 substituent groups as far as examined here, while affording several exceptions. With Eq-1 (A = 1.3, B = 38), a conformational diagram can be obtained. This allows us to overview the diverse helical conformational properties of the asymmetric 1,2-diacyl-sn-glycerols in the solutions state.
期刊介绍:
Cessation. Tetrahedron: Asymmetry presents experimental or theoretical research results of outstanding significance and timeliness on asymmetry in organic, inorganic, organometallic and physical chemistry, as well as its application to related disciplines, especially bio-organic chemistry.
The journal publishes critical reviews, original research articles and preliminary communications dealing with all aspects of the chemical, physical and theoretical properties of non-racemic organic and inorganic materials and processes. Topics relevant to the journal include: the physico-chemical and biological properties of enantiomers; strategies and methodologies of asymmetric synthesis; resolution; chirality recognition and enhancement; analytical techniques for assessing enantiomeric purity and the unambiguous determination of absolute configuration; and molecular graphics and modelling methods for interpreting and predicting asymmetric phenomena. Papers describing the synthesis or properties of non-racemic molecules will be required to include a separate statement in the form of a Stereochemistry Abstract, for publication in the same issue, of the criteria used for the assignment of configuration and enantiomeric purity.