Abdulmalik Aldawsari, Syed Adnan Yusuf, Riad Souissi, Muhammad AL-Qurishi
{"title":"Real-Time Instance Segmentation Models for Identification of Vehicle Parts","authors":"Abdulmalik Aldawsari, Syed Adnan Yusuf, Riad Souissi, Muhammad AL-Qurishi","doi":"10.1155/2023/6460639","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Automated assessment of car damage is a major challenge in the auto repair and damage assessment industries. The domain has several application areas, ranging from car assessment companies, such as car rentals and body shops, to accidental damage assessment for car insurance companies. In vehicle assessment, the damage can take many forms, from scratches, minor dents, and major dents to missing parts. Often, the assessment area has a significant level of noise, such as dirt, grease, oil, or rush, which makes accurate identification challenging. Moreover, in the repair industry, identifying a particular part is the first step in obtaining an accurate labor and part assessment, where the presence of different car models, shapes, and sizes makes the task even more challenging for a machine-learning model to perform well. To address these challenges, this study explores and applies various instance segmentation methodologies to determine the best-performing models. This study focuses on two genres of real-time instance segmentation models, namely, SipMask and YOLACT, owing to their industrial significance. These methodologies were evaluated against a previously reported car parts dataset (DSMLR) as well as an internally curated dataset extracted from local car repair workshops. The YOLACT-based part localization and segmentation method outperformed other real-time instance mechanisms with an mAP of 66.5. For the workshop repair dataset, SipMask++ reported better accuracy for object detection with a mAP of 57.0, with outcomes for AP<sup>IoU=.50</sup> and AP<sup>IoU=.75</sup> reporting 72.0 and 67.0, respectively, whereas YOLACT was observed to be a better performer for AP<sup><i>s</i></sup> with 44.0 and 2.6 for object detection and segmentation categories, respectively.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2023 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2023/6460639","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2023/6460639","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Automated assessment of car damage is a major challenge in the auto repair and damage assessment industries. The domain has several application areas, ranging from car assessment companies, such as car rentals and body shops, to accidental damage assessment for car insurance companies. In vehicle assessment, the damage can take many forms, from scratches, minor dents, and major dents to missing parts. Often, the assessment area has a significant level of noise, such as dirt, grease, oil, or rush, which makes accurate identification challenging. Moreover, in the repair industry, identifying a particular part is the first step in obtaining an accurate labor and part assessment, where the presence of different car models, shapes, and sizes makes the task even more challenging for a machine-learning model to perform well. To address these challenges, this study explores and applies various instance segmentation methodologies to determine the best-performing models. This study focuses on two genres of real-time instance segmentation models, namely, SipMask and YOLACT, owing to their industrial significance. These methodologies were evaluated against a previously reported car parts dataset (DSMLR) as well as an internally curated dataset extracted from local car repair workshops. The YOLACT-based part localization and segmentation method outperformed other real-time instance mechanisms with an mAP of 66.5. For the workshop repair dataset, SipMask++ reported better accuracy for object detection with a mAP of 57.0, with outcomes for APIoU=.50 and APIoU=.75 reporting 72.0 and 67.0, respectively, whereas YOLACT was observed to be a better performer for APs with 44.0 and 2.6 for object detection and segmentation categories, respectively.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.