Demanded abstract interpretation

Benno Stein, B. E. Chang, Manu Sridharan
{"title":"Demanded abstract interpretation","authors":"Benno Stein, B. E. Chang, Manu Sridharan","doi":"10.1145/3453483.3454044","DOIUrl":null,"url":null,"abstract":"We consider the problem of making expressive static analyzers interactive. Formal static analysis is seeing increasingly widespread adoption as a tool for verification and bug-finding, but even with powerful cloud infrastructure it can take minutes or hours to get batch analysis results after a code change. While existing techniques offer some demand-driven or incremental aspects for certain classes of analysis, the fundamental challenge we tackle is doing both for arbitrary abstract interpreters. Our technique, demanded abstract interpretation, lifts program syntax and analysis state to a dynamically evolving graph structure, in which program edits, client-issued queries, and evaluation of abstract semantics are all treated uniformly. The key difficulty addressed by our approach is the application of general incremental computation techniques to the complex, cyclic dependency structure induced by abstract interpretation of loops with widening operators. We prove that desirable abstract interpretation meta-properties, including soundness and termination, are preserved in our approach, and that demanded analysis results are equal to those computed by a batch abstract interpretation. Experimental results suggest promise for a prototype demanded abstract interpretation framework: by combining incremental and demand-driven techniques, our framework consistently delivers analysis results at interactive speeds, answering 95% of queries within 1.2 seconds.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the problem of making expressive static analyzers interactive. Formal static analysis is seeing increasingly widespread adoption as a tool for verification and bug-finding, but even with powerful cloud infrastructure it can take minutes or hours to get batch analysis results after a code change. While existing techniques offer some demand-driven or incremental aspects for certain classes of analysis, the fundamental challenge we tackle is doing both for arbitrary abstract interpreters. Our technique, demanded abstract interpretation, lifts program syntax and analysis state to a dynamically evolving graph structure, in which program edits, client-issued queries, and evaluation of abstract semantics are all treated uniformly. The key difficulty addressed by our approach is the application of general incremental computation techniques to the complex, cyclic dependency structure induced by abstract interpretation of loops with widening operators. We prove that desirable abstract interpretation meta-properties, including soundness and termination, are preserved in our approach, and that demanded analysis results are equal to those computed by a batch abstract interpretation. Experimental results suggest promise for a prototype demanded abstract interpretation framework: by combining incremental and demand-driven techniques, our framework consistently delivers analysis results at interactive speeds, answering 95% of queries within 1.2 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
要求抽象的解释
我们考虑使具有表现力的静态分析器具有交互性的问题。正式的静态分析作为一种验证和发现错误的工具被越来越广泛地采用,但是即使使用强大的云基础设施,在代码更改后也可能需要几分钟或几小时才能获得批处理分析结果。虽然现有技术为某些类型的分析提供了一些需求驱动或增量方面,但我们解决的基本挑战是为任意抽象解释器同时做到这两点。我们的技术要求抽象解释,将程序语法和分析状态提升到动态发展的图结构,其中程序编辑,客户端发出的查询和抽象语义的评估都被统一处理。我们的方法解决的关键困难是将一般增量计算技术应用于复杂的循环依赖结构,这些结构是由带扩展算子的循环的抽象解释引起的。我们证明了我们的方法保留了理想的抽象解释元性质,包括稳健性和终止性,并且所需的分析结果与批量抽象解释计算的结果相等。实验结果表明,原型需求抽象解释框架有望实现:通过结合增量和需求驱动技术,我们的框架始终以交互速度提供分析结果,在1.2秒内回答95%的查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to find naming issues with big code and small supervision Cyclic program synthesis Fluid: a framework for approximate concurrency via controlled dependency relaxation Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models Phased synthesis of divide and conquer programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1