{"title":"Al/SiCNP and Al/SiCNP/X nanocomposites fabrication and properties: A review","authors":"A. Reddy, P. Krishna, R. Rao","doi":"10.1177/2397791417744706","DOIUrl":null,"url":null,"abstract":"Global requirement for minimum cost, high efficiency, and good grade materials has made a diversion in research from base alloys to composite materials, since the last five decades. In the case of metal matrix composites, aluminium metal matrix composites have been certified and steadily advanced due to properties such as high strength, low density, and high wear resistance. They are widely used in automobile industry, aircraft industry, structural applications, and many other defence systems. Researchers have observed that the addition of nano-size SiCNP reinforcements to aluminium-based matrix yields superior properties and good bonding characteristics between matrix and reinforcements of nanocomposites. Along with silicon carbide particulate primary nano-reinforcements, researchers studied the properties of aluminium metal matrix nanocomposites with the addition of secondary reinforcements. These hybrid nanocomposites exhibited improved wear resistance. This article reviews the fabrication methods, mechanical properties, and tribological properties of aluminium-based hybrid metal matrix nanocomposites.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"30 1","pages":"155 - 172"},"PeriodicalIF":4.2000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791417744706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 22
Abstract
Global requirement for minimum cost, high efficiency, and good grade materials has made a diversion in research from base alloys to composite materials, since the last five decades. In the case of metal matrix composites, aluminium metal matrix composites have been certified and steadily advanced due to properties such as high strength, low density, and high wear resistance. They are widely used in automobile industry, aircraft industry, structural applications, and many other defence systems. Researchers have observed that the addition of nano-size SiCNP reinforcements to aluminium-based matrix yields superior properties and good bonding characteristics between matrix and reinforcements of nanocomposites. Along with silicon carbide particulate primary nano-reinforcements, researchers studied the properties of aluminium metal matrix nanocomposites with the addition of secondary reinforcements. These hybrid nanocomposites exhibited improved wear resistance. This article reviews the fabrication methods, mechanical properties, and tribological properties of aluminium-based hybrid metal matrix nanocomposites.
期刊介绍:
Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.