Bending Stresses and Deformations in Prismatic Profiled Shafts with Noncircular Contours Based on Higher Hybrid Trochoids

IF 12.2 1区 工程技术 Q1 MECHANICS Applied Mechanics Reviews Pub Date : 2022-08-23 DOI:10.3390/applmech3030060
M. Ziaei
{"title":"Bending Stresses and Deformations in Prismatic Profiled Shafts with Noncircular Contours Based on Higher Hybrid Trochoids","authors":"M. Ziaei","doi":"10.3390/applmech3030060","DOIUrl":null,"url":null,"abstract":"This paper presents an analytical method for determining the bending stresses and deformations in prismatic, noncircular profile shafts with trochoidal cross sections. The so-called higher trochoids can be used as form-fit shaft-hub connections. Hybrid (mixed) higher trochoids (M-profiles) were developed for the special application as a profile contour for the form-fit shaft and hub connections in an earlier work by the author. M-profiles combine the advantages of the two standardised polygonal and spline contours, which are used as shaft-hub connections for the transmission of high torques. In this study, the geometric and mechanical properties of the higher hybrid trochoids were investigated using complex functions to simplify the calculations. The pure bending stress and shaft deflection were determined for M-profiles using bending theory based on the theory of mathematical elasticity. The loading cases consisted of static and rotating bends. Analytical, numerical, and experimental results agreed well. The calculation formulas developed in this work enable reliable and low-cost dimensioning with regard to the stresses and elastic deformations of profile shafts subjected to bending loads.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"9 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mechanics Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/applmech3030060","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an analytical method for determining the bending stresses and deformations in prismatic, noncircular profile shafts with trochoidal cross sections. The so-called higher trochoids can be used as form-fit shaft-hub connections. Hybrid (mixed) higher trochoids (M-profiles) were developed for the special application as a profile contour for the form-fit shaft and hub connections in an earlier work by the author. M-profiles combine the advantages of the two standardised polygonal and spline contours, which are used as shaft-hub connections for the transmission of high torques. In this study, the geometric and mechanical properties of the higher hybrid trochoids were investigated using complex functions to simplify the calculations. The pure bending stress and shaft deflection were determined for M-profiles using bending theory based on the theory of mathematical elasticity. The loading cases consisted of static and rotating bends. Analytical, numerical, and experimental results agreed well. The calculation formulas developed in this work enable reliable and low-cost dimensioning with regard to the stresses and elastic deformations of profile shafts subjected to bending loads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高混合曲面的非圆轮廓棱柱形轴的弯曲应力和变形
本文提出了一种确定棱柱形、非圆轮廓轴的弯曲应力和变形的解析方法。所谓的高齿槽面可以用作形式配合轴-轮毂连接。在作者早期的工作中,针对特殊应用,开发了混合高齿形(m型)作为轴与轮毂配合连接的齿形轮廓。m型轮廓结合了两种标准化多边形和花键轮廓的优点,用作高扭矩传输的轴-毂连接。为了简化计算,本文采用复变函数法研究了高杂化矫形体的几何和力学性能。利用基于数学弹性理论的弯曲理论,确定了m型型材的纯弯曲应力和轴挠度。装载箱包括静弯和旋转弯。分析、数值和实验结果吻合良好。在这项工作中开发的计算公式能够可靠和低成本地确定受弯曲载荷影响的型材轴的应力和弹性变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
28.20
自引率
0.70%
发文量
13
审稿时长
>12 weeks
期刊介绍: Applied Mechanics Reviews (AMR) is an international review journal that serves as a premier venue for dissemination of material across all subdisciplines of applied mechanics and engineering science, including fluid and solid mechanics, heat transfer, dynamics and vibration, and applications.AMR provides an archival repository for state-of-the-art and retrospective survey articles and reviews of research areas and curricular developments. The journal invites commentary on research and education policy in different countries. The journal also invites original tutorial and educational material in applied mechanics targeting non-specialist audiences, including undergraduate and K-12 students.
期刊最新文献
Experimental Investigation of Unidirectional Glass-Fiber-Reinforced Plastics under High Strain Rates A Simple and Effective Method to Evaluate Seismic Maximum Floor Velocities for Steel-Framed Structures with Supplementary Dampers Dynamic Analysis of a Timoshenko–Ehrenfest Single-Walled Carbon Nanotube in the Presence of Surface Effects: The Truncated Theory MechGPT, a Language-Based Strategy for Mechanics and Materials Modeling That Connects Knowledge Across Scales, Disciplines and Modalities Refined and Simplified Simulations for Steel–Concrete–Steel Structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1