LiDAR-Video Driving Dataset: Learning Driving Policies Effectively

Yiping Chen, Jingkang Wang, Jonathan Li, Cewu Lu, Zhipeng Luo, Han Xue, Cheng Wang
{"title":"LiDAR-Video Driving Dataset: Learning Driving Policies Effectively","authors":"Yiping Chen, Jingkang Wang, Jonathan Li, Cewu Lu, Zhipeng Luo, Han Xue, Cheng Wang","doi":"10.1109/CVPR.2018.00615","DOIUrl":null,"url":null,"abstract":"Learning autonomous-driving policies is one of the most challenging but promising tasks for computer vision. Most researchers believe that future research and applications should combine cameras, video recorders and laser scanners to obtain comprehensive semantic understanding of real traffic. However, current approaches only learn from large-scale videos, due to the lack of benchmarks that consist of precise laser-scanner data. In this paper, we are the first to propose a LiDAR-Video dataset, which provides large-scale high-quality point clouds scanned by a Velodyne laser, videos recorded by a dashboard camera and standard drivers' behaviors. Extensive experiments demonstrate that extra depth information help networks to determine driving policies indeed.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"358 1","pages":"5870-5878"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

Abstract

Learning autonomous-driving policies is one of the most challenging but promising tasks for computer vision. Most researchers believe that future research and applications should combine cameras, video recorders and laser scanners to obtain comprehensive semantic understanding of real traffic. However, current approaches only learn from large-scale videos, due to the lack of benchmarks that consist of precise laser-scanner data. In this paper, we are the first to propose a LiDAR-Video dataset, which provides large-scale high-quality point clouds scanned by a Velodyne laser, videos recorded by a dashboard camera and standard drivers' behaviors. Extensive experiments demonstrate that extra depth information help networks to determine driving policies indeed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光雷达-视频驾驶数据集:有效学习驾驶策略
学习自动驾驶策略是计算机视觉领域最具挑战性但也最有前途的任务之一。大多数研究人员认为,未来的研究和应用应该结合摄像头、录像机和激光扫描仪,以获得对真实交通的全面语义理解。然而,目前的方法只能从大规模的视频中学习,因为缺乏由精确的激光扫描仪数据组成的基准。在本文中,我们首次提出了激光雷达视频数据集,该数据集提供了由Velodyne激光扫描的大规模高质量点云,仪表板摄像头记录的视频和标准驾驶员行为。大量的实验表明,额外的深度信息确实有助于网络确定驾驶策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1