I. Krasnikov, Christian Suhr, A. Seteikin, B. Roth, M. Meinhardt-Wollweber
{"title":"Two efficient approaches for modeling of Raman scattering in homogeneous turbid media.","authors":"I. Krasnikov, Christian Suhr, A. Seteikin, B. Roth, M. Meinhardt-Wollweber","doi":"10.1364/JOSAA.33.000426","DOIUrl":null,"url":null,"abstract":"The quantitative analysis of Raman spectroscopic signals in biological tissue is generally difficult. Typical samples contain a multitude of molecular species and, in addition, measurements are altered by attenuation of the Raman signal. Realistic numerical modeling of the Raman process can help to facilitate the quantitative analysis of the Raman spectra, but approaches so far are scarce and often time-consuming. In this work, we report on two different and very efficient approaches for modeling of Raman scattering in turbid media irradiated by laser light. Both approaches utilize the Monte Carlo method to simulate the Raman scattering process. We compare the efficiency of both approaches and discuss possible future extensions and experimental validation.","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"476 1","pages":"426-33"},"PeriodicalIF":1.4000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.33.000426","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 10
Abstract
The quantitative analysis of Raman spectroscopic signals in biological tissue is generally difficult. Typical samples contain a multitude of molecular species and, in addition, measurements are altered by attenuation of the Raman signal. Realistic numerical modeling of the Raman process can help to facilitate the quantitative analysis of the Raman spectra, but approaches so far are scarce and often time-consuming. In this work, we report on two different and very efficient approaches for modeling of Raman scattering in turbid media irradiated by laser light. Both approaches utilize the Monte Carlo method to simulate the Raman scattering process. We compare the efficiency of both approaches and discuss possible future extensions and experimental validation.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.