Relationship between Intramuscular and Skin Temperature and Anthropometric Consideration for Post-exercise Cryotherapy: Developing Prediction Models for Clinical Use
Youngwook Kim, Nicholas Rech, T. Louder, E. Bressel
{"title":"Relationship between Intramuscular and Skin Temperature and Anthropometric Consideration for Post-exercise Cryotherapy: Developing Prediction Models for Clinical Use","authors":"Youngwook Kim, Nicholas Rech, T. Louder, E. Bressel","doi":"10.15758/ajk.2022.24.3.22","DOIUrl":null,"url":null,"abstract":"OBJECTIVES To investigate the relationships among intramuscular cooling rates during (IM cooling rate) and after cold water immersion (CWI) (Post-IM cooling rate), skin tissue cooling rate during CWI (skin cooling rate), and anthropometric characteristics, and develop prediction models to assist clinical decision making.METHODS After a 30-min cycling trial, 16 young healthy adults received a CWI treatment (10 °C) until either intramuscular thigh temperature (2 cm sub-adipose) of the rectus femoris decreased 7 °C below preexercise level or 30 minutes was reached. Temperatures were recorded using skin and implantable finewire thermocouples. Before the cycling trial, %BF, anterior thigh adipose tissue thickness, muscle thickness, total thigh volume, and thigh circumference were measured. Pearson’s correlation coefficients were used to determine significant predictors of IM and Post-IM cooling rates (cooling rate: the amount of temperature reduction per minute). All predictors, including skin cooling rate, %BF, adipose tissue thickness, muscle thickness, total thigh volume, and thigh circumference, were included in multiple linear regression models to figure out factors that best predict the IM and Post-IM cooling rates.RESULTS Correlation analysis demonstrated significant correlations between IM cooling rate and skin cooling rate (r=.85), %BF (r=-.79), and adipose tissue thickness (r=-.79), and between Post-IM cooling rate and thigh circumference (r=-.68), adipose tissue thickness (r=-.58), total thigh volume (r=-.56), and %BF (r=-.53). Regression models identified skin cooling rate and %BF to have the greatest predictability for IM cooling rate (R2 =.82) and muscle thickness and thigh circumference to have the greatest predictability for the Post-IM cooling rate (R2 =.68).CONCLUSIONS This study provides justification for the use of skin cooling rates during CWI and %BF to estimate IM cooling rate and muscle thickness and thigh circumference to estimate Post-IM cooling rate. These findings will help practitioners to determine the duration of CWI treatment after exercise.","PeriodicalId":22264,"journal":{"name":"The Asian Journal of Kinesiology","volume":"484 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Asian Journal of Kinesiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15758/ajk.2022.24.3.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
OBJECTIVES To investigate the relationships among intramuscular cooling rates during (IM cooling rate) and after cold water immersion (CWI) (Post-IM cooling rate), skin tissue cooling rate during CWI (skin cooling rate), and anthropometric characteristics, and develop prediction models to assist clinical decision making.METHODS After a 30-min cycling trial, 16 young healthy adults received a CWI treatment (10 °C) until either intramuscular thigh temperature (2 cm sub-adipose) of the rectus femoris decreased 7 °C below preexercise level or 30 minutes was reached. Temperatures were recorded using skin and implantable finewire thermocouples. Before the cycling trial, %BF, anterior thigh adipose tissue thickness, muscle thickness, total thigh volume, and thigh circumference were measured. Pearson’s correlation coefficients were used to determine significant predictors of IM and Post-IM cooling rates (cooling rate: the amount of temperature reduction per minute). All predictors, including skin cooling rate, %BF, adipose tissue thickness, muscle thickness, total thigh volume, and thigh circumference, were included in multiple linear regression models to figure out factors that best predict the IM and Post-IM cooling rates.RESULTS Correlation analysis demonstrated significant correlations between IM cooling rate and skin cooling rate (r=.85), %BF (r=-.79), and adipose tissue thickness (r=-.79), and between Post-IM cooling rate and thigh circumference (r=-.68), adipose tissue thickness (r=-.58), total thigh volume (r=-.56), and %BF (r=-.53). Regression models identified skin cooling rate and %BF to have the greatest predictability for IM cooling rate (R2 =.82) and muscle thickness and thigh circumference to have the greatest predictability for the Post-IM cooling rate (R2 =.68).CONCLUSIONS This study provides justification for the use of skin cooling rates during CWI and %BF to estimate IM cooling rate and muscle thickness and thigh circumference to estimate Post-IM cooling rate. These findings will help practitioners to determine the duration of CWI treatment after exercise.