Towards Safety Barrier Analysis of Hydrogen Powered Maritime Vessels

Lorenzo Balestra, Ruochen Yang, I. Schjølberg, I. Utne, Ø. Ulleberg
{"title":"Towards Safety Barrier Analysis of Hydrogen Powered Maritime Vessels","authors":"Lorenzo Balestra, Ruochen Yang, I. Schjølberg, I. Utne, Ø. Ulleberg","doi":"10.1115/omae2021-60451","DOIUrl":null,"url":null,"abstract":"\n This paper focuses on the use of safety barrier analysis, during the design phase of a vessel powered by cryogenic hydrogen, to identify possible weaknesses in the architecture. Barrier analysis can be used to evaluate a series of scenarios that have been identified in the industry as critical. The performance evaluation of such barriers in a specific scenario can lead to either the approval of the design, if a safety threshold is met, or the inclusion of additional barriers to mitigate risk even further. By conducting a structured analysis, it is possible to identify key barriers that need to be included in the system, intended both as physical barriers (sensors, cold box) and as administrative barriers (checklist, operator training). The method chosen for this study is the Barrier and Operational Risk Analysis (BORA) method. This method, developed for the analysis of hydrocarbon releases, is described in the paper and adapted for the analysis of cryogenic hydrogen releases. A case study is presented using the BORA method, developing the qualitative barrier analysis. The qualitative section of the method can be easily adapted to vessels of different class and size adopting the same storage solution. The barrier analysis provides a general framework to analyze the system and check that the safety requirements defined by the ship operator and maritime certification societies are met.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"136 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-60451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the use of safety barrier analysis, during the design phase of a vessel powered by cryogenic hydrogen, to identify possible weaknesses in the architecture. Barrier analysis can be used to evaluate a series of scenarios that have been identified in the industry as critical. The performance evaluation of such barriers in a specific scenario can lead to either the approval of the design, if a safety threshold is met, or the inclusion of additional barriers to mitigate risk even further. By conducting a structured analysis, it is possible to identify key barriers that need to be included in the system, intended both as physical barriers (sensors, cold box) and as administrative barriers (checklist, operator training). The method chosen for this study is the Barrier and Operational Risk Analysis (BORA) method. This method, developed for the analysis of hydrocarbon releases, is described in the paper and adapted for the analysis of cryogenic hydrogen releases. A case study is presented using the BORA method, developing the qualitative barrier analysis. The qualitative section of the method can be easily adapted to vessels of different class and size adopting the same storage solution. The barrier analysis provides a general framework to analyze the system and check that the safety requirements defined by the ship operator and maritime certification societies are met.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢动力船舶安全屏障分析
本文的重点是在低温氢动力容器的设计阶段使用安全屏障分析,以确定结构中可能存在的弱点。障碍分析可以用来评估一系列在行业中被确定为关键的场景。在特定场景中对这些屏障的性能评估可能导致设计的批准(如果满足安全阈值),或者包含额外的屏障以进一步降低风险。通过进行结构化分析,可以识别需要包括在系统中的关键障碍,既可以作为物理障碍(传感器、冷箱),也可以作为管理障碍(检查表、操作人员培训)。本研究选择的方法是障碍和操作风险分析(BORA)方法。本文介绍了这种用于分析碳氢化合物释放的方法,并适用于分析低温氢释放。采用BORA方法进行了一个案例研究,发展了定性屏障分析。该方法的定性切片可以很容易地适用于采用相同存储溶液的不同类别和大小的容器。屏障分析提供了一个总体框架来分析系统,并检查船舶经营人和海事认证协会定义的安全要求是否得到满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Large Autonomous Subsea Freight-Glider for Liquid CO2 Transportation Assessment of Wind and Wave High-Resolution Forecasts During High-Energy Weather Events in the Brazilian Coast A Low-Cost Modular Image-Based Approach to Characterize Large-Field Wave Shapes in Glass Wave Flume Coupling of a Boundary Element Method With a Boundary Layer Method for Accurate Rudder Force Calculation Within the Early Design Stage Hydrodynamic Impact on Wedges During Water Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1