U-Net Architecture for the Automatic Detection and Delineation of the Electrocardiogram

G. Jiménez-Pérez, A. Alcaine, O. Camara
{"title":"U-Net Architecture for the Automatic Detection and Delineation of the Electrocardiogram","authors":"G. Jiménez-Pérez, A. Alcaine, O. Camara","doi":"10.23919/CinC49843.2019.9005824","DOIUrl":null,"url":null,"abstract":"Automatic detection and delineation of the electrocardiogram (ECG) is usually the first step for many feature extraction tasks. Although deep learning (DL) approaches have been proposed in the literature, those employ non-optimal and outdated architectures. Thus, rule-based algorithms remain as state-of-the-art. Nevertheless, those may not generalize on other datasets and require difficult offline tuning for adapting to new scenarios. This work frames this task as a segmentation problem for using an adaptation of the U-Net architecture, a fully convolutional network. The detection performance shows a precision of 89.27%, 98.18% and 93.60% for the detection of the P, QRS and T waves, respectively, and a recall of 89.07%, 99.47% and 95.21%. This work shows promising results, outperforming existing DL approaches while being more generalizable than rule-based methods.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"5 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Automatic detection and delineation of the electrocardiogram (ECG) is usually the first step for many feature extraction tasks. Although deep learning (DL) approaches have been proposed in the literature, those employ non-optimal and outdated architectures. Thus, rule-based algorithms remain as state-of-the-art. Nevertheless, those may not generalize on other datasets and require difficult offline tuning for adapting to new scenarios. This work frames this task as a segmentation problem for using an adaptation of the U-Net architecture, a fully convolutional network. The detection performance shows a precision of 89.27%, 98.18% and 93.60% for the detection of the P, QRS and T waves, respectively, and a recall of 89.07%, 99.47% and 95.21%. This work shows promising results, outperforming existing DL approaches while being more generalizable than rule-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于心电图自动检测和描绘的U-Net体系结构
心电图的自动检测和描绘通常是许多特征提取任务的第一步。虽然深度学习(DL)方法已经在文献中提出,但这些方法采用了非最优和过时的架构。因此,基于规则的算法仍然是最先进的。然而,这些可能不能推广到其他数据集,并且需要艰难的离线调优以适应新的场景。这项工作将这项任务定义为使用U-Net架构(一个全卷积网络)的自适应分割问题。P波、QRS波和T波的检测精度分别为89.27%、98.18%和93.60%,召回率分别为89.07%、99.47%和95.21%。这项工作显示了有希望的结果,优于现有的深度学习方法,同时比基于规则的方法更具通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automated Approach Based on a Convolutional Neural Network for Left Atrium Segmentation From Late Gadolinium Enhanced Magnetic Resonance Imaging Multiobjective Optimization Approach to Localization of Ectopic Beats by Single Dipole: Case Study Sepsis Prediction in Intensive Care Unit Using Ensemble of XGboost Models A Comparative Analysis of HMM and CRF for Early Prediction of Sepsis Blocking L-Type Calcium Current Reduces Vulnerability to Re-Entry in Human iPSC-Derived Cardiomyocytes Tissue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1