Detection of Driver Dynamics with VGG16 Model

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2022-06-01 DOI:10.2478/acss-2022-0009
Alper Aytekin, Vasfiye Mençik
{"title":"Detection of Driver Dynamics with VGG16 Model","authors":"Alper Aytekin, Vasfiye Mençik","doi":"10.2478/acss-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract One of the most important factors triggering the occurrence of traffic accidents is that drivers continue to drive in a tired and drowsy state. It is a great opportunity to regularly control the dynamics of the driver with transfer learning methods while driving, and to warn the driver in case of possible drowsiness and to focus their attention in order to prevent traffic accidents due to drowsiness. A classification study was carried out with the aim of detecting the drowsiness of the driver by the position of the eyelids and the presence of yawning movement using the Convolutional Neural Network (CNN) architecture. The dataset used in the study includes the face shapes of drivers of different genders and different ages while driving. Accuracy and F1-score parameters were used for experimental studies. The results achieved are 91 % accuracy for the VGG16 model and an F1-score of over 90 % for each class.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"92 1","pages":"83 - 88"},"PeriodicalIF":0.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract One of the most important factors triggering the occurrence of traffic accidents is that drivers continue to drive in a tired and drowsy state. It is a great opportunity to regularly control the dynamics of the driver with transfer learning methods while driving, and to warn the driver in case of possible drowsiness and to focus their attention in order to prevent traffic accidents due to drowsiness. A classification study was carried out with the aim of detecting the drowsiness of the driver by the position of the eyelids and the presence of yawning movement using the Convolutional Neural Network (CNN) architecture. The dataset used in the study includes the face shapes of drivers of different genders and different ages while driving. Accuracy and F1-score parameters were used for experimental studies. The results achieved are 91 % accuracy for the VGG16 model and an F1-score of over 90 % for each class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于VGG16模型的驾驶员动力学检测
驾驶员在疲劳、困倦状态下持续驾驶是引发交通事故发生的重要因素之一。这是一个很好的机会,可以在驾驶过程中使用迁移学习方法定期控制驾驶员的动态,并在可能出现困倦的情况下警告驾驶员并集中注意力,以防止因困倦而发生交通事故。使用卷积神经网络(CNN)架构进行分类研究,目的是通过眼睑的位置和打哈欠运动的存在来检测驾驶员的睡意。研究中使用的数据集包括不同性别和不同年龄的司机在驾驶时的脸型。准确性和f1评分参数用于实验研究。VGG16模型的准确率达到91%,每个类别的f1分数超过90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1