Validation of Voltammetric Methods for Online Analysis of Platinum Dissolution in a Hydrogen PEM Fuel Cell Stack

Lena Birkner, M. Eichelbaum
{"title":"Validation of Voltammetric Methods for Online Analysis of Platinum Dissolution in a Hydrogen PEM Fuel Cell Stack","authors":"Lena Birkner, M. Eichelbaum","doi":"10.3390/electrochem3040048","DOIUrl":null,"url":null,"abstract":"Platinum dissolution in PEM fuel cells is an increasingly important indicator for the state-of-health and lifetime prediction of fuel cells in real applications. For this reason, portable online analysis tools are needed that can detect and quantify platinum with high sensitivity, selectivity, and accuracy in the product water of fuel cells. We validated the hanging mercury drop electrode (HMDE) and non-toxic bismuth film electrodes for the voltammetric determination of platinum for this purpose. Bismuth films were prepared by reductive deposition on both a glassy carbon solid state electrode and on a screen-printed electrode (film on-chip electrode). Both bismuth film electrodes could be successfully validated for the determination of platinum by adsorptive stripping voltammetry. An LOD of 7.9 μg/L and an LOQ of 29.1 μg/L were determined for the bismuth film solid state electrode, values of 22.5 μg/L for the LOD and of 79.0 μg/L for the LOQ were obtained for the bismuth film on-chip electrode. These numbers are still much higher than the results measured with the HMDE (LOD: 0.76 ng/L; LOQ: 2.8 ng/L) and are not sufficient to detect platinum in the product water of a fuel cell run in different load tests. The amount of dissolved platinum produced by a 100 W fuel cell stack upon dynamic and continuous high load cycling, respectively, was in the range of 2.9–4.1 ng/L, which could only be detected by the HMDE.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electrochem3040048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Platinum dissolution in PEM fuel cells is an increasingly important indicator for the state-of-health and lifetime prediction of fuel cells in real applications. For this reason, portable online analysis tools are needed that can detect and quantify platinum with high sensitivity, selectivity, and accuracy in the product water of fuel cells. We validated the hanging mercury drop electrode (HMDE) and non-toxic bismuth film electrodes for the voltammetric determination of platinum for this purpose. Bismuth films were prepared by reductive deposition on both a glassy carbon solid state electrode and on a screen-printed electrode (film on-chip electrode). Both bismuth film electrodes could be successfully validated for the determination of platinum by adsorptive stripping voltammetry. An LOD of 7.9 μg/L and an LOQ of 29.1 μg/L were determined for the bismuth film solid state electrode, values of 22.5 μg/L for the LOD and of 79.0 μg/L for the LOQ were obtained for the bismuth film on-chip electrode. These numbers are still much higher than the results measured with the HMDE (LOD: 0.76 ng/L; LOQ: 2.8 ng/L) and are not sufficient to detect platinum in the product water of a fuel cell run in different load tests. The amount of dissolved platinum produced by a 100 W fuel cell stack upon dynamic and continuous high load cycling, respectively, was in the range of 2.9–4.1 ng/L, which could only be detected by the HMDE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线分析氢质子交换膜燃料电池堆中铂溶解的伏安法验证
质子交换膜燃料电池中铂的溶解是燃料电池在实际应用中健康状态和寿命预测的重要指标。因此,需要便携式在线分析工具,以高灵敏度,选择性和准确性检测和定量燃料电池产品水中的铂。我们验证了悬垂汞滴电极(HMDE)和无毒铋膜电极伏安法测定铂的目的。采用还原沉积的方法在玻璃碳固态电极和丝网印刷电极(片上薄膜电极)上制备了铋薄膜。两种铋膜电极均可用于吸附溶出伏安法测定铂。铋膜固态电极的LOD为7.9 μg/L, LOQ为29.1 μg/L,片上铋膜电极的LOQ为22.5 μg/L, LOQ为79.0 μg/L。这些数字仍然远远高于用HMDE测量的结果(LOD: 0.76 ng/L;LOQ: 2.8 ng/L),不足以检测在不同负载试验中运行的燃料电池产品水中的铂。100 W燃料电池堆在动态和连续高负荷循环下产生的溶解铂量分别在2.9 ~ 4.1 ng/L之间,这只能通过HMDE来检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
0
期刊最新文献
Reduced Graphene Oxide Decorated Titanium Nitride Nanorod Array Electrodes for Electrochemical Applications High C-Rate Performant Electrospun LiFePO4/Carbon Nanofiber Self-Standing Cathodes for Lithium-Ion Batteries Supercritical CO2-Assisted Electroless Plating of Ultrahigh-Molecular-Weight Polyethylene Filaments for Weavable Device Application Ion-Selective Electrodes in the Food Industry: Development Trends in the Potentiometric Determination of Ionic Pollutants Determining the Oxidation Stability of Electrolytes for Lithium-Ion Batteries Using Quantum Chemistry and Molecular Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1