Hydrogenation of Zircaloy-4 in a Defective Fuel Pellet for Pressurized Water Reactors

IF 0.4 Q4 NUCLEAR SCIENCE & TECHNOLOGY Journal of Nuclear Fuel Cycle and Waste Technology Pub Date : 2022-08-08 DOI:10.1115/icone29-90736
Doctor Enivweru, Qingyu Wang, A. Ayodeji, John Njoroge
{"title":"Hydrogenation of Zircaloy-4 in a Defective Fuel Pellet for Pressurized Water Reactors","authors":"Doctor Enivweru, Qingyu Wang, A. Ayodeji, John Njoroge","doi":"10.1115/icone29-90736","DOIUrl":null,"url":null,"abstract":"The integrity of structural components is a major concern in reactor safety. Cladding materials can fail when hydrogen uptake is in excess of the terminal solid solubility (TSS). Previous studies on hydrogenation or secondary hydriding (SH) focused mainly on loss of coolant accident (LOCA) and fuel ballooning. Most of these studies are carried out in autoclave conditions and they preclude the contribution of ionizing radiations (neutrons and gamma) to hydrogen generation during normal reactor condition. This study is devoted to the hydrogenation of Zircaloy-4 (Zry-4) cladding material during normal reactor operation and during the early phase of core degradation in a LOCA event. Radiolysis and corrosion are considered as hydrogen sources during normal reactor operation while corrosion is considered in the early phase of core degradation. Using appropriate initial and boundary conditions peculiar to pressurized water reactors (PWRs), diffusion equation is solved in a defective Zry-4 fuel system using COMSOL Multiphysics 5.2. Results show that the average corrosive source term (1.279E−4 mol m−3 s−1) is higher than the radiolytic source term (3.6594E−7 mol m−3 s−1) by a factor of 350 during normal reactor operation. By integrating in two kinetics regimes and setting 6 years as the maximum lifetime of Zry-4, the amount of H dissolved in the cladding material at a temperature of 633 K are 6.54E−03 and 2.02 wt. ppm due to radiolysis and corrosion respectively. These values are safe compared to the TSS of dissolution (CTSSD) of Zry-4 which is 117 wt. ppm at the same referenced temperature. However, in the early phase of core degradation where the source term is 9.405E−01 mol m−3 s−1, SH is observed in 13 days. A comparison is made between hydrogenation by integration in two regimes and hydrogenation using Sievert’s law. The results obtained in this study are useful for the prediction of the onset of hydrogen embrittlement, and to determine the service time of Zry-4 cladding material.","PeriodicalId":36762,"journal":{"name":"Journal of Nuclear Fuel Cycle and Waste Technology","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Fuel Cycle and Waste Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone29-90736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integrity of structural components is a major concern in reactor safety. Cladding materials can fail when hydrogen uptake is in excess of the terminal solid solubility (TSS). Previous studies on hydrogenation or secondary hydriding (SH) focused mainly on loss of coolant accident (LOCA) and fuel ballooning. Most of these studies are carried out in autoclave conditions and they preclude the contribution of ionizing radiations (neutrons and gamma) to hydrogen generation during normal reactor condition. This study is devoted to the hydrogenation of Zircaloy-4 (Zry-4) cladding material during normal reactor operation and during the early phase of core degradation in a LOCA event. Radiolysis and corrosion are considered as hydrogen sources during normal reactor operation while corrosion is considered in the early phase of core degradation. Using appropriate initial and boundary conditions peculiar to pressurized water reactors (PWRs), diffusion equation is solved in a defective Zry-4 fuel system using COMSOL Multiphysics 5.2. Results show that the average corrosive source term (1.279E−4 mol m−3 s−1) is higher than the radiolytic source term (3.6594E−7 mol m−3 s−1) by a factor of 350 during normal reactor operation. By integrating in two kinetics regimes and setting 6 years as the maximum lifetime of Zry-4, the amount of H dissolved in the cladding material at a temperature of 633 K are 6.54E−03 and 2.02 wt. ppm due to radiolysis and corrosion respectively. These values are safe compared to the TSS of dissolution (CTSSD) of Zry-4 which is 117 wt. ppm at the same referenced temperature. However, in the early phase of core degradation where the source term is 9.405E−01 mol m−3 s−1, SH is observed in 13 days. A comparison is made between hydrogenation by integration in two regimes and hydrogenation using Sievert’s law. The results obtained in this study are useful for the prediction of the onset of hydrogen embrittlement, and to determine the service time of Zry-4 cladding material.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锆-4在压水堆缺陷燃料球团中的加氢
结构部件的完整性是反应堆安全的一个主要问题。当吸氢量超过终端固溶度(TSS)时,包层材料就会失效。以往关于氢化或二次氢化的研究主要集中在冷却剂损失事故和燃料膨胀。这些研究大多是在高压釜条件下进行的,它们排除了在正常反应堆条件下电离辐射(中子和伽马)对氢生成的贡献。本研究致力于在正常反应堆运行期间和在LOCA事件中堆芯降解的早期阶段锆-4 (Zry-4)包层材料的氢化。在反应堆正常运行时,辐射分解和腐蚀被认为是氢源,而在堆芯降解的早期阶段,腐蚀被认为是氢源。采用合适的压水堆初始条件和边界条件,利用COMSOL Multiphysics 5.2软件求解了存在缺陷的Zry-4燃料系统的扩散方程。结果表明,反应器正常运行时,腐蚀源平均项(1.279E−4 mol m−3 s−1)比辐射源平均项(3.6594E−7 mol m−3 s−1)高350倍。通过对两种动力学体系进行积分,并将Zry-4的最大寿命设定为6年,在633 K温度下,由于辐射溶解和腐蚀,包层材料中的H溶解量分别为6.54E - 03和2.02 wt. ppm。与相同参考温度下Zry-4的溶解TSS (CTSSD)为117wt . ppm相比,这些值是安全的。然而,在核心降解的早期阶段,源项为9.405E−01 mol m−3 s−1,在13天内观察到SH。比较了两种体系积分加氢法和西弗特定律加氢法。研究结果可用于预测氢脆发生的时间和确定Zry-4包层材料的使用时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
25.00%
发文量
35
期刊最新文献
Transport Risk Assessment for On-Road/Sea Transport of Decommissioning Waste of Kori Unit 1 Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process Occupational Dose Analysis of Spent Resin Handling Accident During NPP Decommissioning Fissile Measurement in Various Types Using Nuclear Resonances Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1