An Effective Approach to Test Suite Reduction and Fault Detection Using Data Mining Techniques

B. Subashini, D. Mala
{"title":"An Effective Approach to Test Suite Reduction and Fault Detection Using Data Mining Techniques","authors":"B. Subashini, D. Mala","doi":"10.4018/IJOSSP.2017100101","DOIUrl":null,"url":null,"abstract":"Software testing is used to find bugs in the software to provide a quality product to the end users. Test suites are used to detect failures in software but it may be redundant and it takes a lot of time for the execution of software. In this article, an enormous number of test cases are created using combinatorial test design algorithms. Attribute reduction is an important preprocessing task in data mining. Attributes are selected by removing all weak and irrelevant attributes to reduce complexity in data mining. After preprocessing, it is not necessary to test the software with every combination of test cases, since the test cases are large and redundant, the healthier test cases are identified using a data mining techniques algorithm. This is healthier and the final test suite will identify the defects in the software, it will provide better coverage analysis and reduces execution time on the software.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"37 1","pages":"1-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2017100101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Software testing is used to find bugs in the software to provide a quality product to the end users. Test suites are used to detect failures in software but it may be redundant and it takes a lot of time for the execution of software. In this article, an enormous number of test cases are created using combinatorial test design algorithms. Attribute reduction is an important preprocessing task in data mining. Attributes are selected by removing all weak and irrelevant attributes to reduce complexity in data mining. After preprocessing, it is not necessary to test the software with every combination of test cases, since the test cases are large and redundant, the healthier test cases are identified using a data mining techniques algorithm. This is healthier and the final test suite will identify the defects in the software, it will provide better coverage analysis and reduces execution time on the software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于数据挖掘技术的测试集缩减和故障检测的有效方法
软件测试用于发现软件中的错误,从而为最终用户提供高质量的产品。测试套件用于检测软件中的故障,但它可能是冗余的,并且需要花费大量时间来执行软件。在本文中,使用组合测试设计算法创建了大量的测试用例。属性约简是数据挖掘中一项重要的预处理任务。通过去除所有弱属性和不相关属性来选择属性,以降低数据挖掘的复杂性。在预处理之后,没有必要使用测试用例的每个组合来测试软件,因为测试用例是大的和冗余的,使用数据挖掘技术算法识别更健康的测试用例。这样更健康,并且最终的测试套件将识别软件中的缺陷,它将提供更好的覆盖率分析并减少软件的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
期刊最新文献
Organizational Influencers in Open-Source Software Projects Enhancing Clustering Performance Using Topic Modeling-Based Dimensionality Reduction Cross Project Software Refactoring Prediction Using Optimized Deep Learning Neural Network with the Aid of Attribute Selection Bug Triage Automation Approaches Modelling and Simulation of Patient Flow in the Emergency Department During the COVID-19 Pandemic Using Hierarchical Coloured Petri Net
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1