Ai-Xin Zhang, Yuhang He, Ling-An Wu, Li-Ming Chen, B. Wang
{"title":"Table-top X-ray Ghost Imaging with Ultra-Low Radiation","authors":"Ai-Xin Zhang, Yuhang He, Ling-An Wu, Li-Ming Chen, B. Wang","doi":"10.1364/OPTICA.5.000374","DOIUrl":null,"url":null,"abstract":"The use of x-ray imaging in medicine and other research is well known. Generally, the image quality is proportional to the total flux, but high photon energy could severely damage the specimen, so how to decrease the radiation dose while maintaining image quality is a fundamental problem. In \"ghost\" imaging, an image is retrieved from a known patterned illumination field and the total intensity transmitted through the object collected by a bucket detector. Using a table-top x-ray source we have realized ghost imaging of plane and natural objects with ultra-low radiation on the order of single photons. Compared with conventional x-ray imaging, a higher contrast-to-noise ratio is obtained for the same radiation dose. This new technique could greatly reduce radiation damage of biological specimens.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"176","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OPTICA.5.000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 176
Abstract
The use of x-ray imaging in medicine and other research is well known. Generally, the image quality is proportional to the total flux, but high photon energy could severely damage the specimen, so how to decrease the radiation dose while maintaining image quality is a fundamental problem. In "ghost" imaging, an image is retrieved from a known patterned illumination field and the total intensity transmitted through the object collected by a bucket detector. Using a table-top x-ray source we have realized ghost imaging of plane and natural objects with ultra-low radiation on the order of single photons. Compared with conventional x-ray imaging, a higher contrast-to-noise ratio is obtained for the same radiation dose. This new technique could greatly reduce radiation damage of biological specimens.