{"title":"Groundwater pollution source identification problems with unknown aquifer parameters by ADGA approach","authors":"Ying Zhao, Jiuhui Li, Wenxi Lu, Fan Yang","doi":"10.1080/15275922.2021.1976317","DOIUrl":null,"url":null,"abstract":"Abstract High-cost remediation of groundwater pollution makes it important to obtain exact information about the source. This is quite difficult to achieve in naturally ill-posed inverse problems of this kind. If the aquifer parameters are also unknown, the problem becomes even more challenging. To address this difficulty, we propose the alternating direction genetic algorithm (ADGA) approach, together with modification of the order of magnitude of the decision variables, to increase the accuracy of the results and computational efficiency. Seven scenarios were designed to test the accuracy of the proposed approach in aquifer with different properties, number of pollution sources, parameters and measurement errors. The results show that combining the ADGA approach with modification of the order of magnitude of the decision variables for identifying both groundwater pollution source and aquifer parameters significantly increases the accuracy of estimated results. The NE value for the estimated results decreased from 9.81% to 58.44% for different cases, and computation time is about half decreased. In addition, the approach is applicable in situations where concentrations of observational data with measurement error, and for multiple source locations and non-uniform media.","PeriodicalId":11895,"journal":{"name":"Environmental Forensics","volume":"231 1","pages":"120 - 129"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Forensics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1976317","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract High-cost remediation of groundwater pollution makes it important to obtain exact information about the source. This is quite difficult to achieve in naturally ill-posed inverse problems of this kind. If the aquifer parameters are also unknown, the problem becomes even more challenging. To address this difficulty, we propose the alternating direction genetic algorithm (ADGA) approach, together with modification of the order of magnitude of the decision variables, to increase the accuracy of the results and computational efficiency. Seven scenarios were designed to test the accuracy of the proposed approach in aquifer with different properties, number of pollution sources, parameters and measurement errors. The results show that combining the ADGA approach with modification of the order of magnitude of the decision variables for identifying both groundwater pollution source and aquifer parameters significantly increases the accuracy of estimated results. The NE value for the estimated results decreased from 9.81% to 58.44% for different cases, and computation time is about half decreased. In addition, the approach is applicable in situations where concentrations of observational data with measurement error, and for multiple source locations and non-uniform media.
期刊介绍:
Environmental Forensics provides a forum for scientific investigations that address environment contamination, its sources, and the historical reconstruction of its release into the environment. The context for investigations that form the published papers in the journal are often subjects to regulatory or legal proceedings, public scrutiny, and debate. In all contexts, rigorous scientific underpinnings guide the subject investigations.
Specifically, the journal is an international, quarterly, peer-reviewed publication offering scientific studies that explore or are relevant to the source, age, fate, transport, as well as human health and ecological effects of environmental contamination. Journal subject matter encompasses all aspects of contamination mentioned above within the environmental media of air, water, soil, sediments and biota. Data evaluation and analysis approaches are highlighted as well including multivariate statistical methods. Journal focus is on scientific and technical information, data, and critical analysis in the following areas:
-Contaminant Fingerprinting for source identification and/or age-dating, including (but not limited to) chemical, isotopic, chiral, mineralogical/microscopy techniques, DNA and tree-ring fingerprinting
-Specific Evaluative Techniques for source identification and/or age-dating including (but not limited to) historical document and aerial photography review, signature chemicals, atmospheric tracers and markets forensics, background concentration evaluations.
-Statistical Evaluation, Contaminant Modeling and Data Visualization
-Vapor Intrusion including delineating the source and background values of indoor air contamination
-Integrated Case Studies, employing environmental fate techniques
-Legal Considerations, including strategic considerations for environmental fate in litigation and arbitration, and regulatory statutes and actions