Integration of complete elemental mass-balanced stoichiometry and aqueous phase chemistry for bioprocess modelling of liquid and solid waste treatment systems – Part 4: Aligning the modelled and measured aqueous phases

IF 1 4区 环境科学与生态学 Q4 WATER RESOURCES Water SA Pub Date : 2022-01-26 DOI:10.17159/wsa/2022.v48.i1.3322
GA Ekama, CJ Brouckaert, BM Brouckaert
{"title":"Integration of complete elemental mass-balanced stoichiometry and aqueous phase chemistry for bioprocess modelling of liquid and solid waste treatment systems – Part 4: Aligning the modelled and measured aqueous phases","authors":"GA Ekama, CJ Brouckaert, BM Brouckaert","doi":"10.17159/wsa/2022.v48.i1.3322","DOIUrl":null,"url":null,"abstract":"Completely mass-balanced biological, physical and chemical process stoichiometry ensures that the CHONPS material and charge content entering and exiting bioprocess system models is conserved, which is a requirement for pH prediction in integrated physical, chemical and biological process models. Bioprocesses transform the material content from reactants to products, exchanging material between the aqueous, gaseous and solid phases, which cause pH changes in the aqueous phase. By measuring the material content of the aqueous phase, the progress of bioprocesses can be monitored. Alkalinity is an important aqueous-phase property that can be used to track aqueous-phase changes caused by physical, chemical and biological processes. Alkalinity is a stoichiometry property of the components in solution (i.e., a linear function of the amounts present). Its uptake from, and release to, the aqueous phase can both be modelled with bioprocess stoichiometry, and measured in physical bioprocess systems, and so aid in linking the modelled and measured aqueous-phase compositions. Changes in the concentrations of components containing the elements C, H, O, N, P and S result in changes in six weak acid/bases systems in the aqueous phase, all of which affect the total alkalinity. These are: inorganic carbon (IC), ortho-phosphate (OP), free and saline ammonia (FSA), volatile fatty acids (VFA), free and saline sulphide (FSS) and the water itself. Characterization of the aqueous phase to quantify the material content of the aqueous phase containing these six weak acid/base systems using the 5-point titration method is described. While several alkalinity titration based methods are available for anaerobic digestion bioprocess monitoring, only the 5-point titration is sufficiently accurate for aqueous-phase characterization to quantify the aqueous-material content for pH prediction in bioprocess models.","PeriodicalId":23623,"journal":{"name":"Water SA","volume":"290 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water SA","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i1.3322","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2

Abstract

Completely mass-balanced biological, physical and chemical process stoichiometry ensures that the CHONPS material and charge content entering and exiting bioprocess system models is conserved, which is a requirement for pH prediction in integrated physical, chemical and biological process models. Bioprocesses transform the material content from reactants to products, exchanging material between the aqueous, gaseous and solid phases, which cause pH changes in the aqueous phase. By measuring the material content of the aqueous phase, the progress of bioprocesses can be monitored. Alkalinity is an important aqueous-phase property that can be used to track aqueous-phase changes caused by physical, chemical and biological processes. Alkalinity is a stoichiometry property of the components in solution (i.e., a linear function of the amounts present). Its uptake from, and release to, the aqueous phase can both be modelled with bioprocess stoichiometry, and measured in physical bioprocess systems, and so aid in linking the modelled and measured aqueous-phase compositions. Changes in the concentrations of components containing the elements C, H, O, N, P and S result in changes in six weak acid/bases systems in the aqueous phase, all of which affect the total alkalinity. These are: inorganic carbon (IC), ortho-phosphate (OP), free and saline ammonia (FSA), volatile fatty acids (VFA), free and saline sulphide (FSS) and the water itself. Characterization of the aqueous phase to quantify the material content of the aqueous phase containing these six weak acid/base systems using the 5-point titration method is described. While several alkalinity titration based methods are available for anaerobic digestion bioprocess monitoring, only the 5-point titration is sufficiently accurate for aqueous-phase characterization to quantify the aqueous-material content for pH prediction in bioprocess models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液体和固体废物处理系统的生物过程建模用完全元素质量平衡化学计量学和水相化学的集成。第4部分:校正模拟和测量的水相
完全质量平衡的生物、物理和化学过程化学计量学确保了进入和离开生物过程系统模型的CHONPS物质和电荷含量是保守的,这是物理、化学和生物综合过程模型中pH预测的要求。生物过程将物质从反应物转化为产物,在水相、气相和固相之间交换物质,这导致水相的pH值发生变化。通过测量水相的物质含量,可以监测生物过程的进展。碱度是一种重要的水相性质,可用于跟踪物理、化学和生物过程引起的水相变化。碱度是溶液中组分的化学计量性质(即,存在量的线性函数)。它从水相的吸收和释放既可以用生物过程化学计量学建模,也可以在物理生物过程系统中测量,因此有助于将模拟和测量的水相组成联系起来。含C、H、O、N、P和S元素组分浓度的变化导致水相中6种弱酸/碱体系的变化,这些变化都会影响总碱度。它们是:无机碳(IC)、正磷酸盐(OP)、游离和含盐氨(FSA)、挥发性脂肪酸(VFA)、游离和含盐硫化物(FSS)和水本身。描述了用5点滴定法表征水相,以量化含有这六种弱酸/碱体系的水相的物质含量。虽然有几种基于碱度滴定的方法可用于厌氧消化生物过程监测,但只有5点滴定法足够准确地用于水相表征,以量化生物过程模型中pH预测的水物质含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water SA
Water SA 环境科学-水资源
CiteScore
2.80
自引率
6.70%
发文量
46
审稿时长
18-36 weeks
期刊介绍: WaterSA publishes refereed, original work in all branches of water science, technology and engineering. This includes water resources development; the hydrological cycle; surface hydrology; geohydrology and hydrometeorology; limnology; salinisation; treatment and management of municipal and industrial water and wastewater; treatment and disposal of sewage sludge; environmental pollution control; water quality and treatment; aquaculture in terms of its impact on the water resource; agricultural water science; etc. Water SA is the WRC’s accredited scientific journal which contains original research articles and review articles on all aspects of water science, technology, engineering and policy. Water SA has been in publication since 1975 and includes articles from both local and international authors. The journal is issued quarterly (4 editions per year).
期刊最新文献
Effects of leachate concentration, carbon dioxide and aeration flow rate on chlorophyll and carotenoid productivity and bioremediation potential of the microalga Chlorella minutissima Experimental study on optimum performance of two-stage air-heated bubble-column humidification–dehumidification system Occurrence of multidrug-resistant Escherichia coli and antibiotic resistance genes in a wastewater treatment plant and its associated river water in Harare, Zimbabwe A baseline study on the prevalence of microplastics in South African drinking water: from source to distribution Effect of water stratification and mixing on phytoplankton functional groups: a case study of Xikeng Reservoir, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1