PERFORMANCE OF INTEGRATED TWO STAGE ANOXIC-AEROBIC SEQUENCING BATCH REACTOR IN THE TREATMENT OF SEWAGE

M. I. A. Isma, R. Ashvini, M. Munira
{"title":"PERFORMANCE OF INTEGRATED TWO STAGE ANOXIC-AEROBIC SEQUENCING BATCH REACTOR IN THE TREATMENT OF SEWAGE","authors":"M. I. A. Isma, R. Ashvini, M. Munira","doi":"10.31580/SPS.V1I2.649","DOIUrl":null,"url":null,"abstract":"A 10 L SBR reactor was operated on a two cycles per day with total cycle time of 500 minutes. This study explored the impact of a 300 minute react period with alternating two stage anoxic-aerobic phases starting at 120 minutes to 30 minutes on effluent quality, sludge settleability and particle size distribution.The overall removal efficiencies for COD,  TSS and NH4-N were 93.8%, 98.4 % and 85.9%, respectively. The results indicated a good process performance with the first 2h anoxic/1.5 h aerobic period with removals of 66.0%, 78.5% and 59.4 % for COD, NH4-N and TSS removal respectively.The NH4-N removal was not enhanced although the anoxic period was lengthened by 1 h with low removal of 4.5 % and subsequent 7.2% of the second aerobic phase. There was an increase in the particle size of the sludge from 117.743μm to 127.310μm over an  operating period of 35 days.","PeriodicalId":21574,"journal":{"name":"Science Proceedings Series","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Proceedings Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31580/SPS.V1I2.649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A 10 L SBR reactor was operated on a two cycles per day with total cycle time of 500 minutes. This study explored the impact of a 300 minute react period with alternating two stage anoxic-aerobic phases starting at 120 minutes to 30 minutes on effluent quality, sludge settleability and particle size distribution.The overall removal efficiencies for COD,  TSS and NH4-N were 93.8%, 98.4 % and 85.9%, respectively. The results indicated a good process performance with the first 2h anoxic/1.5 h aerobic period with removals of 66.0%, 78.5% and 59.4 % for COD, NH4-N and TSS removal respectively.The NH4-N removal was not enhanced although the anoxic period was lengthened by 1 h with low removal of 4.5 % and subsequent 7.2% of the second aerobic phase. There was an increase in the particle size of the sludge from 117.743μm to 127.310μm over an  operating period of 35 days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一体化两级厌氧-好氧序批式反应器处理污水的性能
以10l SBR反应器为研究对象,每天运行2个循环,总循环时间为500分钟。本研究探讨了300分钟的反应周期,从120分钟到30分钟交替进行两个阶段的缺氧-好氧阶段,对出水质量、污泥沉降性和粒度分布的影响。对COD、TSS和NH4-N的总去除率分别为93.8%、98.4%和85.9%。结果表明,前2h缺氧/1.5 h好氧处理效果良好,COD、NH4-N和TSS的去除率分别为66.0%、78.5%和59.4%。虽然缺氧时间延长了1 h,但NH4-N的去除率较低,为4.5%,随后的第二好氧阶段去除率为7.2%,但NH4-N的去除率并未提高。在35天的运行期内,污泥的粒径从117.743μm增加到127.310μm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Awareness of Students on Genetically Modified Organisms in a State University: Basis for a Proposed University Awareness Program Peanut Crisp: A Protein-Rich Snack A Experimental Study of Laboratory Compaction and Sand Cone on Foundation Tub Soil Green Revolution: An Innovation for Environmental Pollution in Changing Climate of World Impact of Rooftop PV Shading on Net Electrical Energy Demand of Buildings in Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1