A Covid Outbreak Prediction using Machine Learning

Sakshi Saklani, Ashish Chandak, Purshottam J Assudani, Amrusha Rahangdale, Achal Loya
{"title":"A Covid Outbreak Prediction using Machine Learning","authors":"Sakshi Saklani, Ashish Chandak, Purshottam J Assudani, Amrusha Rahangdale, Achal Loya","doi":"10.47164/ijngc.v13i5.925","DOIUrl":null,"url":null,"abstract":"Machine learning (ML] helps with the future prediction of action and take decision. A variety of prediction techniques are used for the future prediction of risks and effectively dealing it. This work shows how ML models can predict death rates of COVID-19 patients so that we can do effective treatment and try to minimize the effect of the causes. Coronavirus 2019, COVID-19 is a member of the Coronaviridae genus. A virus without a cure causes unpredictable devastation to people's lives as well as the financial and economic systems of every nation on earth. We have taken certain features from the COVID-19 dataset to study and comprehend the future circumstance using machine learning algorithms, various prediction models are created, and their performances are calculated and assessed. We have compared machine learning algorithms viz. Random Forest and Linear Regression, Decision Tree to predict a number of cases.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"22 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v13i5.925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Machine learning (ML] helps with the future prediction of action and take decision. A variety of prediction techniques are used for the future prediction of risks and effectively dealing it. This work shows how ML models can predict death rates of COVID-19 patients so that we can do effective treatment and try to minimize the effect of the causes. Coronavirus 2019, COVID-19 is a member of the Coronaviridae genus. A virus without a cure causes unpredictable devastation to people's lives as well as the financial and economic systems of every nation on earth. We have taken certain features from the COVID-19 dataset to study and comprehend the future circumstance using machine learning algorithms, various prediction models are created, and their performances are calculated and assessed. We have compared machine learning algorithms viz. Random Forest and Linear Regression, Decision Tree to predict a number of cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的Covid爆发预测
机器学习(ML)有助于预测未来的行动并做出决策。各种预测技术被用来预测未来的风险并有效地处理它。这项工作显示了ML模型如何预测COVID-19患者的死亡率,以便我们可以进行有效的治疗,并尽量减少原因的影响。2019冠状病毒(COVID-19)是冠状病毒属的一员。一种无法治愈的病毒会对人们的生活以及地球上每个国家的金融和经济系统造成不可预测的破坏。我们从COVID-19数据集中提取某些特征,利用机器学习算法研究和理解未来情况,建立各种预测模型,并计算和评估其性能。我们比较了机器学习算法,即随机森林和线性回归,决策树来预测一些情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1